
I AD-A162 564 SILICON COMPILATION: A SOLUTION TO THE COMPLEXITY OF i
1 VLSI (VERY LARGE-SCA.. (U) ILLINOIS UNIV AT URIMINA
I COORDINATED SCIENCE LAB P GEE SEP 85 UILU-ENG-S5-2230

UNCLASSIFIE SS14-04-C-1149F/O 915 .

L111. .16

1111111 .0

1Q 11.4 Ill M

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARS -I63- A

r.A

September 1985 UILU-ENG-85--2230

COORDINATED SCIENCE LABORATORY
College of Engineering

In

SILICON COMPILATION:
A SOLUTION TO THE
COMPLEXITY OF
VLSI CIRCUIT DESIGN

DTIC
Perry GeeDE19W

* UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited. b j Ii) 0 35

.1 1

UNCLASSIFIED4
* ECURITY CLASSIFICATION OF THIS PACE0

V REPORT DOCUMENTATION PAGE
I 1011REPORITSECURITY CLASSIFICATION 1l. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2o6 SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAiLABILITY OF REPORT

N/A Approved for public release
2tL OECLASSIPICATIOWiOOWINGRADING SCHEDULE dsrbto niie

N/A dsrbto niie
4 .01PIRFORMING ORGANIZATION REPORT NUMBER(S) L. MONITORING ORGANIZATION REPORT NUMBS11113

- UILU-ENG-85-2230N/

B.. NAMIE OF PERFORMING 'ORGANIZATION IL OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

-Coordinated Science Laboratory 11/opUibw ficufNaa)esac
University of Illinois N/A Ofc fNvlRsac

* &. ADDRESS (Cify. State and ZIP Code) 7b. ADDRESS lCity. Sate nd ZIP Code)
* University of Illinois at Urbana-Chamapign 80N unySre

1101 West Springfield Ave. Arlington, VA 22217
Urbana, EL 61801
ft. MAMIE OF PUNOING/S1PONSORING OL. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION Joint Services 01411100101011)

* Electronics Program N/A NOO014-84-C0149

Be. AORESS (City, Sigg. and ZIP Codes 10. SOURCE OF FUNDING NOS.

- 800 N. Quincy Street PROGRAM PROJECT AK WOKUI

Arlington, VA 22217ELMNNON.N.N.

11. TITLE lftnclug secu~wty C~am~eaof SILICON COMPILATION: GN N/A N/AN/NA
* A-SOLUTION TO THE COMPLEXITY OF VLSI CIRCUIT DES GN

1 2. PERSONAL AUTHOR(S) GEE, PERRY

* 13&. TYPE OF REPORT Interim 134L TIME COVERED M4 AEO RPR Y. W. e S.PG ON

Tcnclfinal FROaM Set. 84rep.51 Stmbr1985 7
14LSUPPLaMENTARY NOTATION 8

TS~:5 epmbr7

* N/A

17COSATI COOES IS. SUBJECT TORMS ICoinu onII @6 b0e af nec.y ad identify by block Aauberp

9IELD IGROUP- F SUB. (Sm. ISilicon compilation; VLSI circuit design; synthesis; computer-
U aid design; logic minimization; PLA generation; placement;

I I ~routing; layout'.,integrated circuits. '4-
I. ABSTRACT (Coninue. on ,w,.r. it necemon.r in denti~fy 67 block nunmbep

- Designing very large-scale integrated circuits requires several months or more and
increases as the complexity of the design increases. This thesis proposes to reduce the
complexity of the design problem and to reduce the design time by using a high-level language
to specify only the behavioral aspects of a circuit. The circuit is then synthesized from

* this specification. -

20. OISTRI SUrION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

rUPCI.A$SIFIEO/UNLIMiTEO :R SAME AS APT. OTIC USERS UNCLASSIFIED

22&. N~AME OF RESPONSIBLE9 INDIVIDUAL 221. TELEPHONE 4UMABR 122c. OFFICE SYMBOL
lInelude .4ed Code)

DO FORM 1473, 83 APR EDITION OF I JAN 73 13 OBSOLETE. UNCLASSIFIED
IF-

-SECURITY CLASSIFICATION OF THIS PAGE

..-.. 7....,.

SILICON COMPILATION:
A SOLUTION TO THE COMPLEXITY OF VLSI CIRCUIT DESIGN

BY

PERRY GEE

B.S.. University of California. Berkeley, 1983

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1985

Urbana, Illinois

::.....................
bL .-

ABSTRACT

Designing very large-scale integrated)circuits requires several months or more and

increases as the complexity of the design increases. This thesis proposes to reduce the corn-

* plexity of the design problem and to reduce the design time by using a high-level language

to specify only the behavioral aspects of a circuit. The circuit is then synthesized from this

specification.

Accc 'oii For

NTiS CRA &I

DIhC TAB E

D~t b... ..By.........

Avi~iidity C7nccs

AvajI j:.d/or
Dist p.La

-7:

iv

ACKNOWLEDGEMENTS

I would like to thank my research advisor, Professor I. N. Hajj, for his valuable gui-

dance and suggestions. I would like to thank David Overhauser for his assistance in prepar-

ing this thesis. Also I would like to thank Danial Saab for his help with the CAD tools.

-

F ,,

..-.....

TABLE OF CONTENTS

CHAPTER PAGE

1INTRODUCTION..1

1..COMPUTER-AIDED DESIGN (CA).................................

1.2. SILICON COMPILERS... 3

1.3. EXPERT SYSTEMS .. 4

1.4. OVERVIEW .. 6

2 BACKGROUND.. 7

2.1. MacPITTS... 7

.12.2. CMU-DA ... 9

2.3. PROPOSED SILICON COMPILER ... 13

3 SILICON COMPILATION.. 15

*3.1. WHY WE NEED SILICON COMPILERS ... 15

* -3.2. TOOLS NECESSARY FOR SILICON COMPILATION 16

3.2. 1. LOGIC MINIMIZATION... 16

3.2.1.1. rtMNI .. 17

*3.2.1.2. ESPRESSO .. 18

3.2.2. PLA FOLDING .. 20

*3.2.2.1. HIEURISTIC FOLDING.. 22

3.2.2.2 OPTIMAL FOLDING .. 26

3.2.3. PLA GENERATION .. 28

vi

3.2.4. PLACEMENT ... 28

3.24.1. MIN-CUT PA R T I T I O N I NG.................................. 30

3.2A4.1.1. GROUP M I G R A T I ON.................................... 30

3.2A.1.2. DIRECT PARTITIONING... 31

3.24.2 QUADRATIC ASSIGNMENT ... 32

3.2.4.3. ITERATIVE IMPROVEMENT... 33

3.2.4.4. SIMULATED ANNEALING ... 33

*3.2.4.5. HIERARCHAL ITERATIVE IMPROVEMENT........................... 34

3.2.4.5.1i. PLACE DETAILS.. 35

3.2.5. ROUTING .. 36

4 SILICON COMPILER DETAILS ... 39

4.1. SILICON COMPILER LANGUAGE DETAILS....................................... 39

4.2. SILICON COMPILER IMPLEMENTATION DETAILS............................ 39

4.2.1. PHASE I ... 40

*4.2.2. PHASE H ... 44

4.2.3. PHASE M ... 45

4.2.4. PHASE IV.. 46

4.3. DESIGN EXERCISE.. 46

5 CONCLUSIONS ... 54

APPENDIX.. 56

REFERENCES .. 64

CHAPTER 1

INTRODUCTON

With VLSI chips becoming more complex, it is harder to design and verify the correct

operation of a chip. In order to reduce the design time, it is becoming necessary to have a

design environment which reduces the complexity of the problem and allows the design

process to be automated as much as possible.

There are three interrelated design approaches currently being pursued. They are

0 Computer-Aided Design (CAD)

0 Silicon compilers

r * Expert systems

1. 1. COMPUTER-AIDED DESIGN (CAD)

P In the computer-aided design approach there are three major dissiplines for designing

chips: full custom, gate array and master slice. The approach used depends on the perfor-

mance required, the number of chips that will be produced and the amount of design time

* available.

In the full custom approach the designer makes all the design decisions. The designer

* first decides on the data paths to be used. Then he lays out the major blocks in a floor plan.

The designer then decides on how to implement each block and usually draws up a

schematic of the circuit at the logic level. The CAD system provides an efficient method for

* the designer to draw his schematic and provides tools so that the schematic can be simu-

lated. When the circuit is satisfactory the designer then decides on how to lay out the

* . actual circuit on silicon. The CAD system provides the designer with several editors to

* accomplish this task. The designer may choose to lay out each transistor himself by using a

graphical r 'itor and draw each of the rectangles. or he may choose to start in a Sticks editor

* . and have the CAD system generate the layout from this simpler format. The layout

2

generated from the sticks editor is usually not of high quality, but is fast and can always

be modified by a layout editor. While the circuit is being laid out, the CAD system checks

to make sure that the circuit meets all design rules. After the circuit has been laid out in

silicon, the designer runs a program to extract out the transistors, resistors and capacitors.

which are then compared with the schematic to make sure the circuit is correctly laid out.

This extracted circuit is also simulated to make sure that the circuit meets specifications.

This method of designing chips is very slow. One obvious way to speed up the design

is to save cells from one design and use them in future designs. One method (gate array)

has taken this idea to the extreme. In the gate array approach, the only cells that can be

used are f rom. a special library. So the designer only has to decide what cells to use and

- - how to interconnect them. The cells in the library are made from transistors of the same

size so that all the transistors on the chip can be manufactured up to the point of metaliza-

tion. So the advantage of this method of designing chips is that very fast turn-around

times can be achieved, cost of design is very low and the designer has a very high confidence

that the chips will work; however, the disadvantage of this system is that the chips are

poorly utilized in terms of area and are usually of low performance because all the transis-

tors are of the same size.

A less restrictive approach is the master slice approach which is a compromise between

full custom and gate arrays. Here the designer is restricted to use only PLAs and cells in

the predefined library. But unlike the cells in the gate array library these cells have been-

optimized for speed or area (with the restriction that all the cells are of the same height so

that they will abut nicely). This method of design produces denser chips with higher per-

formance than in the gate array method. but the design time is longer, since the transistors

in each cell are of different sizes and the the chips cannot be prefabricated as in the gate

array approach, but the turn-around time is still rather fast.

3

1.2. SILICON COMPILERS

In this approach. the circuit is specified algorithmically using a high-level language.

The advantages of this approach are that the circuit specifications are technology indepen-

dent, the circuit functions are inherently easier to understand because the circuit is

described in a hierarchal manner, and the development of the circuit would be less prone to

errors because all translations that are performed between the levels of the hierarchy are

done by the compiler.

The high-level language used by the silicon compiler is an algorithmic language which

captures the architectural description of the circuit. This architecture can then be imple-

mented in any technology such as bipolar. NMOS or CMOS. The language does not tie the

circuit to the particular methodology used within a particular technology, so the subcircuits

could be implemented as gate arrays, programmable logic arrays (PLA). domino logic, etc.

So the circuit does not need to be redesigned when improvements or ctanges in technology

5 occur. The circuits only need to be recompiled for the ne. technology.

By using a silicon compiler, design time would be reduced, and as a result more com-

plicated circuits could be designed. The hierarchal nature of the language provides a struc-

* ftured way of describing the circuit functions. which makes it easier to understand these

functions. Also specifying an electronic circuit in a language allows the designer to separate

.* the logic design from the physical and geometrical aspects of VLSI circuits. Frequently

used circuits could be saved in a library, further reducing the design time. but unlike the

libraries used in the gate array or semi-custom approaches, this would be a parametrized

library of subcircuits which allows for more design flexibility and better optimized circuits.

This method of designing circuits is less prone to errors because all the necessary

information needed to use a particular tool would be derived from this description. For

" .* "instance, if a designer wants to simulate his circuit at the register-transfer level and

perhaps at the gate-level he must enter two different descriptions of his circuit. So if the

designer made a mistake in translating his circuit he would be simulating two different

.............................. "
*

4

circuits! In the silicon compiler approach. this mistake would be eliminated because all cir-

cuit descriptions would be derived directly or indirectly from the algorithmic description

of the circuit.

The current approach to designing chips can be divided into the following tasks, which -

are shown in Figure 1.1:

1) Architectural Design

2) Logic Synthesis and Design

3) Gate/Circuit Design

4) Layout

5) Simulation and Verification

6) Reiterate above until specs are met

A high-level language allows the architecture to be described in a concise form from

which the computer can generate Steps 2 - 5. Since the majority of the errors made during

design are f rom translating between steps. we would like to automate this translation as

16 much as possible.

At each level of the design. several tools are available to aid the designer. such as PLA

generators, routers, compacters. etc. By using a high-level language we would be able to

free the designer from having to convert his problem into a form that was usable by these

programs. Instead, the compiler could call these programs as necessary and convert the

data as needed by each of the programs.

1.3. EXPERT SYSTEMS

Expert -systems-based CAD tools are very similar to the silicon compiler design

approach. Both methodologies specify the circuit behavior rather than the structural

aspects of the design. so expert systems offer the same advantages as a silicon compiler. The

difference occurs in the method used to generate the data paths. Here the computer system

captures the knowledge of expert human designers. This knowledge is represented as a

.

w5

Architectural Design

Logic Synthesis
and Design

r Gate/Circuit Design

l
Layout

Simulation and Verification

Figure 1.1
Progression of VLSI circuit design

............... ,--.

-i -

* . I

6

collection of several hundred simple rules, unlike the silicon compiler which represents this

same knowledge algorithmically with a few very complex rules and actions. An advantage

to expert systems is that new design styles or changes in technology can be incorporated by

adding more rules to the knowledge base.

IA. OVERVIEW

The thesis is organized as follows. Chapter 2 describes in detail two known approaches

to silicon compilation and how these approaches differ from the one proposed in this thesis.

These approaches are selected as case studies, although other approaches have been proposed

recently. Chapter 3 focuses on the tools necessary for automatic circuit synthesis. Most of

these tools are used in the CAD design approach and are covered in the order they are used

in the silicon compiler. Heuristic logic minimization is covered, followed by the methodol-

ogy chosen in two successful programs MINI [HON 741 and ESPRESSO [BRA 84a]. Next.

PLA folding is covered. First, a heuristic method developed by Hachtel et al. [HAC 821 is

discussed. Then an optimal algorithm based on the work by Lewandowski et al. [LEW 841 "

is reviewed, which is followed by a short section on PLA generation. Automatic subcircuit

placement is discussed next. The approaches covered in this section are min-cut partition-

ing. quadratic assignment. iterative improvement and simulated annealing. This is followed

with a detailed discussion of hierarchal iterative improvement, which is a new approach

developed in this thesis. Chapter 3 closes with a discussion on routing subcircuits. In

Chapter 4, the compiler developed in this thesis is discussed, followed by a case study of a

special purpose processor for hardware LU factorization designed using the compiler.

Chapter 5 summarizes the problems encountered with the compiler and possible solutions

to these problems. The Appendix describes the complete silicon program which is used to
4.

synthesize the processor discussed in Chapter 4.

. " -
" " ,'~~......................ni,,;tbli i, ----:-.....

7

CHAPTER 2

BACKGROUND

Silicon compilation is still in its infancy. Many people are currently working on

developing silicon compilers. At Bell Laboratories a compiler called Xi is being developed

(FEL 831. Carnegie-Mellon has the Design Automation system [THO 83] and MIT has been

working on the MacPitts silicon compiler [SOU 83] for some time. The University of Cali-

* fornia at Berkeley is developing the HAWK/SQUID system [NEW 85] and the University

of Illinois has ARSENIC [GAJ 84]. Industry has also been actively pursuing this field. IBM

is developing the Yorktown compiler [BRA 84b] which is based on APL [BRE 84]. Silicon
(-

Compiler's Inc. is developing the Genesil System [CHE 84]. while the Concorde compiler is

*. being developed at Seattle Silicon [YOU 851. MetaLogic has also entered into the silicon

compiler field with Metasyn, which is based on the MacPitts compiler [YOU 851.

HAWK/SQUID, Xi. and the Yorktown compiler implement the logic equations as PLAs.

ARSENIC is also a PLA-based system, but considers routing to be an integral part of the

* cell [LUR 841. Both Carnegie-Mellon and MIT use data path synthesis. The Concorde com-

piler is different from the other compilers. The Concorde compiler supports the develop-

ment of both analog and digital circuits. Among the best compilers, based on speed and

- area. are the Carnegie-Mellon and the MIT compilers. These two compilers will be dis-

cussed in detail in the following sections.

2.1. MacPITTS

There are many approaches to silicon compilation. The approach used at MIT is simi-

-: lar to data path synthesis and the masterslice approach used in traditional CAD systems.

except that the MacPitts compiler allows the designer to introduce controls such as condi-

Ltional data flow or looping. Like other compilers, the designer specifies the behavior of the

* .circuit rather than its structural aspects. Each language feature and concept is carefully

[I

8

considered on the basis of usefulness and the ability to synthesize it. The designer is able to

make speed/area tradeoffs by specifying the degree of parallelism/serialism in the circuit.

The designer can instruct the MacPitts compiler to construct multiple parallel finite state

machines or to construct a pipelined machine.

fo design a circuit using MacPitts, the designer must understand two concepts: state,

transitions and forms. Forms are the arithmetic and control expressions. They are com-

posed of an operator and arguments. The syntax and semantics of the language are similar

to LISP, but unlike LISP, the arguments to forms are executed in parallel. State transitions

are implied by forms. For instance (setq b (+ b 1)) will increment b after the next state

transition.
II).a

The MacPitts specification language restricts the user to two data types: integer and

boolean. These two data types are implemented differently in silicon. Boolean type vari-

ables are implemented in the control section or in the flags sections. While integer type

variables are implemented in the data path and are of the same length. All storage elements

are master-slave flip-flops and are synchronized by the system clock, while non-storage

variables can be modified asynchronously. To reduce the number of side-effects, all flip-

flops are designed so that the new outputs cannot modify the inputs during a state transi-

tion. The MacPitts compiler constructs the circuit by first determining what specifications

cannot be executed in parallel. These specifications can then share physical units in the data

path. The MacPitts compiler automatically provides the controls necessary to switch the

proper input signals into the appropriate hardware elements. Next. MacPitts determines

which actions cannot be executed simultaneously, such as actions resulting from condition-

als. and shares as many hardware elements between the two actions as possible. The physi-

cal units are selected from a standard library of cells consisting of adders. subtractors.

shifters, comparators, etc. The MacPitts compiler is different from data path generators in

many important ways. The MacPitts compiler provides a cond operator which allows

control-flow. This powerful operator is paralielized and may be executed as a finite state
Va

-. =

r9

machine or with multiplexers. The compiler automatically determines which units can be

multiplexed. and the extra controls needed are automatically routed. The compiler also

generates hardware to start finite state machines in a known state. The MacPitts introduces

some side-effects not present in conventional programming languages, since the MacPitts

tries to execute the arguments of forms in parallel instead of serially. The degree of paral-

lelism is specified by declaring the integer variables as registers or ports and using the com-

mand always, which implements cond as a finite state machine with one state, so a fully

pipelined machine could simply be designed by changing all variables to registers.

The MacPitts compiler also has an interpretor which runs off the circuit specification

for simulating the circuit. Since no translation of the circuit specification is necessary to

run the interpretor. errors are reduced and the designer does not have to worry about simu-

lating a different circuit.

The compiler also is able to estimate the delay through the hardware. The perfor-

mance analyzer is intended to assist the designer locate source statements that cause the

compiler to generate critical paths. The performance analyzer processes each statement

sequentially and flags all critical paths and any statement which exceeds the user specified

*. clock width. The delay used for each module takes into account capacitance, transistor

sizes and number of logic levels. But it does not consider the delay through the control cir-

cuitry when modules are shared or layout specific delays, such as wire length. The analysis

is similar to conventional timing verifiers, but much simpler. The performance analyzer is

intended only to be used for a rough estimate during program development. The final cir-

cuit must still be extracted and verified to make sure that it meets all timing specifications.

Current work on the MacPitts compiler is in partitioning designs. developing test gen-

- eration patterns and designing circuits that are easily testable.

'" 2.2. CMU-DA

Carnegie-Mellon University has developed a silicon compiler with two subcompilers:

.°

.. -.. -. ". ... -.. -. -- .''''.'. ,''..".--.'-
.....-. .,.. .. ,-•-.... ...-.. ,......-...... -.. ,.

10

one which includes an expert system and the other which uses a simple parameterized cost

algorithm to bind cells. The CMU compiler is similar to the MIT MacPitts compiler: both

are based on data path synthesis.

The CMU compiler is part of the Carnegie-Mellon University Design Automation sys-

tem (CMU-DA). The input is an ISPS behavioral description language [BAR 811. This

description is compiled and an internal data flow representation (value trace) is generated.

The value trace can then be used by other design programs, such as graphics programs, to

display the value trace, circuit optimizers, partitioners, and control step allocators to deter-

mine the amount of parallelism/serialism. The value trace is a directed acyclic graph

representation which simplifies the programs needed to recognize and implement design

features. As in optimizing compilers used for programming languages, the nodes of the

value trace represent operators. and the arcs represent the data flow from one operator to

another. In addition, the compiler adds control constructs to represent conditionals and

subroutines.

The value trace is divided into units called VT bodies. Each unit corresponds to a sub-

routine or a labeled block. Each body is further divided into three operators: arithmetic-

logic, control, and value trace specific operators. The arithmetic-logic operators are those

that are defined in ISPS. Control operators represent conditionals and subroutines. The

value trace specific operators are operators with special needs in hardware synthesis like

reading a subfield, or performing sign-extension.

The compiler also performs many classical optimizing transformations before generat-

ing the value trace. such as constant folding (evaluating a constant expression at compile

time). common sub-expression elimination. VT body inline expansion and encapsulation,

code floating (code which is invariant inside a loop body is moved outside the loop), and

loop unrolling (a constant loop is replaced with a finite number of calls to the loop body).

When the value trace is first generated. it contains only necessary controls and data

dependencies. The value trace in this form represents a machine with maximum

I i "". +" " , --, " ..-' .'. .'%

parallelism. The control step allocator assigns value trace operators to states (control-

steps), which can be executed serially. It also specifies which values need to be stored in the

next state. The control-step allocator enables the designer to make speed/area tradeoffs by

adjusting the amount of serialism.

To generate a circuit each value trace element must be bound to hardware. For

instance, operators are bound to ALUs. stored values to registers, and the data flows as

multiplexers and buses. The two subcompilers use different methods for data path syn-

thesis. The first one. EMUCS. uses a simple parameterized cost algorithm to bind cells.

while the second. DAA. uses an expert system to determine the best bindings. EMUCS

attempts to implement the value trace with minimal cost, where cost is a function of the

amount and the complexity of the hardware, although any quantitative parameter, such as

power. or any combination of parameters can be used. The algorithm analyzes the existing

data path and decides which element to bind and modifies the data path -as necessary. It

then reiterates this procedure until all elements are bound.

In the analysis phase. cost tables are generated to determine what should be bound.

- The cost tables are based on the need to use. create and/or modify hardware in order to

* make a binding. A powerful feature of EMUCS is that by changing the cost table database.

a different design will be created from the same value trace. The algorithm chooses the

least costly element to bind. which satisfies all the hardware design rules. For instance.

two operators cannot be bound to the same ALU unless the operators occur in different

states. EMUCS not only considers costs in the present step, but also the cost of binding the

- element in the future.

Currently. EMUCS can only process a single VT body. However, the inline expansion

,' capability reduces most programs into a single VT body. As a test. the MCS6502 processor

instruction set was implemented. Since EMUCS only uses multiplexers and point-to-point

V" connections, a bus was manually inserted and a comparison of the two designs was made.

Since the EMUCS has good design interactions, it is a simple matter to add/subtract extra

.

12

buses. set break points, examine the value trace. and bind hardware elemer s. The two

designs have very few differences. The major difference is that the added bus reduced the

number of multiplexers that are needed. Both designs used the same number of states and

state registers. The bus design required slightly more area, but the bus design is also easier

to test. One drawback with EMUCS is that it maps VT operators to units of the same

width, whereas it should map the operators to units of equal or greater width.

The second subcompiler. DAA. uses a knowledge-based expert system to determine the

best bindings. DAA is written with the OPS5 [HAY 84] knowledge base expert system.

The program consists of about 300 rules for designing VLSI circuits. DAA consists of three

major components: working memory which describes the current problem, a rule memory

which has the actions to be taken if the conditionals are satisfied. and a rule interpreter

which decides which rule to apply. The rule interpreter scans the rule memory for rules in -'

which all the conditionals are true. If there is more than one applicable rule. then the rule

which deals with the most recently modibed element in working memory is chosen first. If

there is still more than one rule, then the rule with the most conditionals true is chosen

because this corresponds to the most specific rule.

First DAA assigns registers to all variables declared in the ISPS description. Now a -.

VT body is chosen and all operator outputs are assigned to registers. Next, the expert sub-

system removes extraneous registers. For instance, registers after combinational logic

where the inputs are stable are unnecessary. The expert subsystem also merges operators

into ALUs and attempts to share temporary variables.

Both synthesis programs were used to implement the MCS6502 processor, and both

produced good designs. EMUCS allocated registers more effectively than DAA, although

the DAA design was more comprehensible because all the declared ISPS registers were
A.

saved. Both algorithms consolidate hardware operators into ALUs, but DAA tends to leave

simple operators as separate modules. EMUCS only uses point-to-point interconnections

and multiplexers, but will use buses if they are inserted manually. whereas DAA uses a

..................................• .-. .•,- ..-o,-.- %.-.-....-

.......... o°o.• .°"o " . .-.....-.. o% .'%,'°. .° o% , ,, °o%. ,--.--..-:-,......, ,-, ,,,, , ,,,-,. .i.m .i~ a- . . - I I "

r.

13

multiplexer strategy adding buses in a limited number of situations. DAA also has the

capability to change the control-step allocation during synthesis if all the delays will not fit

within one state. The EMUCS program is written in C and uses much less CPU time and

memory than DAA, which is written in a lisp-based system. Overall. EMUCS performs

better than DAA.

2.3. PROPOSED SILICON COMPILER

The silicon compiler developed in this thesis is in some ways similar to the two com-

pilers just discussed. Input to all compilers is an abstract specification of the design. For

the compiler in this thesis, the abstract specification resembles the C programming language

[KER 78]. This language was chosen instead of a register transfer language. because fewer

details of the design need to be specified with a highly abstract language. This will enable

the designer to design his circuits faster, but the optimization techniques used by the com-

piler must be more sophisticated.

5Both the MacPitts compiler and the CMU-DA compiler use subcircuits from a stan-

dard cell library to implement the data path. This does not restrict the type of circuits

which can be implemented. since any logic function can be synthesized by using only 2-
U

input NAND gates or 2-input NOR gates. However, designing a circuit with only 2-input

NAND (NOR) gates would over-tax the placement and routing routines. In this thesis. I

propose to implement the subcircuits with programmable logic arrays (PLAs). PLAs pro-

vide a structured way to implement random logic. The placement of the subcircuits would

be easier because each PLA would replace several gates, thus reducing the size of the place-

ment problem. The size of the routing problem is also reduced, because only the external

, connections of the PLA need to be made. Another reason for using PLAs is that all the

technology-dependent aspects of the design is in the PLA. By using a template-driven PLA

generator, new technologies can be incorporated by simply redesigning the templates. To

change technologies in the standard cell library approach, every cell in the library must be

redesigned manually, which may take several weeks as opposed to several hours to redesign

I

7

14

the PLA templates [MAH 84].

The above two compilers only perform the classical optimizing transformations and

simple logic minimization. The logic minimization only considers sharing functional units

in different states. In the compiler developed in this thesis. the powerful techniques -

employed by ESPRESSO [BRA 84a] will be performed automatically. This will free the

designer from having to use hand optimization techniques. such as Karnaugh maps, which

are difficult to use when the number of variables exceeds six or when several equations

must be minimized together.

In order to speed up the development of the silicon compiler. many sophisticated rou-

tines from the computer-aided design approach will be used as subroutines. Many of these

tools are developed at the University of California, at Berkeley. The use of these tools in

the HAWK/SQUID [NEW 85] system at UCB is much different from the approach used in

this thesis. At UCB, the HAWK/SQUID system is really the traditional CAD design

approach of Section 1.1. The HAWK/SQUID system does have a procedural interface, but

this is at a very low level. This symbolic description works with geometric data (ELL 821. -

but the geometries can be parameterized. This allows cells with different properties to be

synthesized from the same symbolic description. My silicon compiler will insulate the .

designer from these geometrical problems, so that he will be able to concentrate on the algo-

rithmic aspects of the problem.

-7-

15

CHAPTER 3

*SILICON COMPILATION

3.1. WHY WE NEED SILICON COMPILERS

With VLSI chips becoming more complex, it is harder to design and verify the correct

operation of a chip. In order to reduce the design time, we would like a design environment

which reduces the complexity of the problem. and we would like to automate the process as

much as possible.

Computer scientists have successfully worked with complex problems for many

years. They approach the problem in a hierarchal fashion. Most programs are designed

using a top-down design with a bottom-up construction. To facilitate this design approach.

programmers use a structured programming style. High-level languages are ideal for struc-

tured programming since they already contain the constructs for expressing these concepts.

The main features of structured programming are hierarchy and modularity. Programs are

written as a collection of modules. Each module performs a well-defined function and can

m be built up from simpler modules. Another advantage of modules is that they can be tested

separately, which reduces the time necessary to test the entire program. Modules also aid

the conceptual understanding of a problem, since programs or other modules which use a

particular module only need to know how to interface with it and not its implementation

* details.

This same approach can be used to design complex VLSI chips. First, a high-level

language needs to be developed so that designers are able to express the solution in a struc-

tured form. This design approach can automate the more tedious aspects of designing a

,. chip. A high-level language description of a circuit is also easier to understand than the

fT corresponding logic diagram or gate description of a circuit.

... . . .*lJ~.'.

16

3.2. TOOLS NECESSARY FOR SILICON COMPILERS

In order for silicon compilers to be totally automatic, they must be able to accept

boolean equations which are not minimized. If the compiler were to implement this

directly. the resulting circuit would be too large and slow. So silicon compilers must incor-

porate logic minimizers. The circuit can then be synthesized from these minimized boolean

equations. There are several well-known methods for implementing boolean equations.

Equations with a small set of variables can be implemented in read-only memory, while

equations with many variables can be implemented in random logic or by using a PLA.

Random logic realizations are much denser than PLAs. but they are hard to test and push

placement and routing routines to their limits. PLAs, on the other hand, are easy to test.

They can also be made to utilize the area much more effectively by folding the rows and

columns of the PLA. Placing and routing PLAs are much simpler than placing and routing

random logic because the number of PLAs to be linked together is usually small.

3.2.1. LOGIC MINIMIZATION

Logic minimization is a necessary tool for silicon compilers. because it will decrease

the area and increase the speed of the circuit. Logic minimizers allow the designer to use

equations in forms that best describe the problem without having to worry about how the

equation should be written to get the best speed and area. For instance, if our compiler

were to implement several equations in n-level logic, then we would want to find as many

common subexpressions as possible to reduce the gate count. or if we implement the equa-

tions in a PLA then we would like to reduce the equations while considering the foldability

of the resulting equations.

Traditional methods of logic minimization, such as Quine-McClusky [DEN 84], which

achieve a minimum solution by first computing all prime implicants and then computing

the minimum cover, are too slow and require too much memory. The number of prime

implicants has been shown to be bounded by C ' in where n is the number of variables. So

heuristic methods have been developed which give a minimal solution. Two programs

.o. . o

.

17

which use different heuristics are MINI [HON 74] and ESPRESSO [BRA 84a]. Both pro-

grams try to minimize the number of implicants and do not consider minimizing the com-

plemented form or the foldability of the resulting cover.

3.2.1.1. MINI

The MINI approach to the problem is to sacrifice optimality and to use a simple cost

criterion. The cost function is simplified by assigning each implicant a constant cost instead

of a cost proportional to its size. MINI finds a near minimal solution by iteratively improv-

ing an initial solution. Each iteration consists of three steps: enlargement. reduction, and

,. reshaping. MINI uses a positional cube representation for the terms since many boolean

operations can be done fast and efficiently. For instance, the OR of two cubes is simply a

list containing both cubes, the AND of two cubes is a bitwise AND of the two cubes and

testing if Cube A covers Cube B is done by checking if (bitwise) NOT A AND B equals 0.

The enlargement phase merges terms if it can contain the term with a larger term in

the don't care set or in F, where F is the logic function. The enlargement phase is where

the number of cubes in the solution decreases significantly. In this phase the cubes are

sorted in order of merging difficulty. This is done heuristically by noting that if a cube can

be expanded to cover many cubes then the cube must have many Is where many other

cubes have Is. The algorithm then takes each cube one at a time and finds a prime cube

covering it and. hopefully, many other cubes in the list. Then all cubes covered by the

prime cube are deleted and the algorithm continues with the next cube.

The prime cube in the enlargement is computed by expanding the Cube C against F.

The expansion of Cube C is done by successively expanding one part at a time. The expan-

sion of part k is done by first computing the k-conjugate ets H(C.k) and Z(C.k).

H(C.k)= I Cg, are k-conjugates andg, eF

Z(C.k) =bit U kth part of h,
h, ell(C k

-

D 18

The single part expansion of C is now defined to be the Cube C with its k 1h part replaced

with ZTCr. The parts are expanded in the order that will cover the most cubes that are

not covered by the original cube.

In the reduction phase, each implicant is reduced to its smallest possible size while

maintaining proper coverage of the minterms. This phase removes redundant terms and _

increases the probability of further merging in future phases.

The reshaping process finds all pairs of terms which can be converted to two disjoint .3

terms. This is done because the disjoint F leads to an ever decreasing solution. Two cubes,

A and B. are reshaped only if their distance is two and one part of A covers the correspond-

ing part of B. If we let i and j be the parts in which A and B differ and let part j of A cover

part j of B. then Cube A is ANDed with the complement of part j of B and Cube B is ORed

with part i of A. Note that this reshaping process is actually a special case of the consensus

operation. The reshaped cube of B is the consensus term between A and B.

The MINI program has been improved in many of its derivatives. In order to do

enlargement the algorithm needs the complement of the function. In the original MINI pro-

gram this is done using the disjoint sharp operation. but has been improved by using a fast

complementator based on unate functions [BRA 82]. Another program SPAM (Stanford

Programmable Array Minimizer) has added partitioning to allow MINI to handle very large

problems [KAN 81].

3.2.1.2. ESPRESSO

The ESPRESSO algorithm is very similar to the MINI algorithm. It too finds a

minimal cover using iterative improvement. The main loop of the ESPRESSO algorithm

consists of expanding each of the cubes, finding an irredundant cover for the cubes and

reducing the cover. On the first iteration, the essential prime cubes are found and moved to

the don't care set, so that they will not be needlessly processed in the minimization loop.

After the function is minimized, the cubes are moved back.

..................................
..

.

F 19

The expansion phase is where the cover is reduced the most. In this phase. each cube is

expanded sequentially, starting with the largest cube. Although this ordering is not as

effecdjve as the ordering used in MINI. it is fast and the cube ordering is not as critical as

the part ordering for expansion. The ESPRESSO algorithm then finds a set of parts to

expand simultaneously. This is done by building two matrices: a blocking matrix and a

covering matrix. The blocking matrix B is determined by the Cube C to be expanded and

F. Entry B~ is 1 if the i " cube of F and Cube C contain both true and complemented

forms of the j'h literal and 0 otherwise. The covering matrix is defined by CM,, equals 1

if the iPh cube of F and Cube C cover the j1" literal. The expanding set is now chosen to be

the set of parts which cover every row of B. but as few rows of CM as possible. This

heuristic choice for the expanding set hopes to maximize the number of cubes covered by

the super cube and minimize the number of literals in the super cube.

The expansion phase generates a prime cover for F. In the irredundant cover phase,

any redundant cubes are deleted. This is accomplished by checking if

(DC U F - 1c) U F) is a tautology where DC represents the don't care cover.

The reduction phase generates a new cover by replacing each cube by a cube contained

9 in it. This phase allows ESPRESSO to move away from a local minimum solution. The

reduction algorithm is similar to the one used by MINI, except ESPRESSO orders the cubes

by taking the largest cube and then ordering the rest of the cubes according to their distance

from the initial cube. Distance is measured by the number of mismatched vertices in each

* of the cubes. ESPRESSO then sequentially reduces each cube in the list.

ESPRESSO iterates the above three phases until there is no improvement in the cover

which is measured by the number of product terms and the number of literals. The algo-

* rithm then makes a systematic search for additional primes which are beneficial to the

cover. If some are found then the main loop is reexecuted. Otherwise, the essential prime

cubes are moved back to the cover and the algorithm terminates.

20

3.2.2. PLA FOLDING

Programmable logic arrays are regular structures for implementing random logic.

PLAs consist of two planes: the AND plane and the OR plane. The AND plane forms all the

minterms for the function and the OR plane forms the concatenation of the minterms. A

PLA is usually specified by a personality matrix. The matrix has one row for each product

term and one column for each input or output. The columns corresponding to the input

represent, the AND plane and the output columns represent the OR plane. The i, j entry in -

the matrix is a 1, 0 or X if the i 1 product term depends on the true, complemented or

don't care form of the pth variable. A 1 or 0 indicates the presence of a transistor in the

PLA (Figures 3.1 - 3.2).

Most PLAs are very sparse, so that a straightforward implementation of the personal-

ity matrix would waste a significant amount of area. However, if we let each two inputs

(outputs) share a column and each two product terms share a row, then we may be able to

reduce the area by 75 percent. This sharing of columns and rows is called folding.

Of course. not all columns (rows) of a PLA can be folded. Before two columns can be

f olded they must be disjoint. Also folding two columns introduces other constraints.

Folding column i on top of column j forces all the rows containing variable i to be above all

the rows containing variable j. because two signals in a PLA cannot be intermixed. So to

specify a folded PLA we must specify the relative positions of the rows and columns. This

specification is realizable if it does not introduce any cyclic constraints on the rows or

columns.

Finding the optimal folding set is an NP-complete problem. There are several heuris-

tics used for finding a good solution, such as bipartite folding or using graph theory tech-

niques. Although finding the best folding set is NP-complete. optimal algorithms do exist

and are widely used because additional constraints from physical considerations limit the

size of the problem. Namely, the number of input/output terms will be less than 200

because of parasitic losses and delays. Most optimal algorithms use heuristic algorithms

F 21

Avout U viii & cy2 & Lviii & Avin:
overflow - selO & Nsell & Movfl I selO & Nsell & Aovftl:

parity - selO0 &!'sell & Mparity I selO & !sell & Aparity;
Lvout = viii & Lvin & selO & !sell & Avin I cy2 & Lvin & selO & !sell:
Uvout = Uvin & cy2 & Lvin & !selO & sell & Avin I Uvin & cy2 & !selO & sell;

Umuxcntl = viii & cy2 & selO & sell:
Lmuxcntl = cy2 & Lviii & selO & !sell:
Amuxcntl = cy2 & !selO & sellI & A vin I cy2 & !Avin;

40 f_-0 = !selO &!sell:
f_1 selO &!sell:
f_-2 = !selO &sell;
f_3 = selO &sellI:

where
& represents logical AND
I represents logical OR

represents logical negation

Figure 3.1
Boolean equations representing PLA MAIN generated

from silicon compiler using code in Figure A.1 (Appendix)

PERSONALITY MATRIX

(inputs) (ou puts)

-1-01 --- 1----

--- 0--- -------

----10 --------- -

--0------ ------

Figure 3.2
Personality matrix of PLA MAIN derived from the above equations

22

with backtracking or a branch and bound technique.

3.2.2.1. HEURISTIC FOLDING

5q 6

Figure 3.3
Graph representation of AND plane in PLA MAIN

Column folding will be described first. Then we will discuss how this algorithm can

be enhanced to include row folding. The optimal column folding problem is reducible to

the graph problem of finding the largest set A such that A is a matching of G (V. E. A)

and G (V. E, X) has no alternating cycles (HAC 821. The vertices of the graph correspond

to the columns of the personality matrix. An undirected edge is added from vertex i to

vertex j if column i cannot be folded with column j (Figure 3.3). The set A consists of a

set of directed edges. An edge in this set from vertex i to vertex j is interpreted to mean

column i is folded on top of column j. Originally the set A = 0.

," ...

23

The algorithm works by placing all the vertices in two sets: an upper folding set. U

and a lower folding set L. Then a suitable folding is found for the first vertex in U by try-

U . ing every vertex in L not connected by an edge. until a folding is possible. When a folding

is found, both vertices are deleted from sets U and L. The process then continues with the

*next vertex in U until no more foldings are possible.

To check if two columns can be folded, we must determine if an alternating cycle will

be created. Checking if an alternating cycle exists if. the directed edge (u. I) is added can be

done effciently by maintaining a list for each vertex v e V. The list will consist of vertices

* which can visit v on an alternating path. Now, to see if there exists an alternating cycle.

we let F. be the set of vertices which can reach u on an alternating path. If any of these

vertices are adjacent to I (connected by an undirected edge) then we have created an alter-

nating cycle, so the pair (u. I) cannot be folded. Updating the list of vertices on alternating

* paths simply consists of concatenating the lists which are adjacent to I to every list in F,.

£ Since folding two columns introduces additional constraints, the order in which we

fold vertices is important. Heuristically this is determined by sorting the upper folding set

* in descending degree and the lower folding set in ascending degree. The motivation for

* selecting u with minimum degree is to minimize the probability that u will be adjacent to a

later 1. This will minimize Elhe creation of alternating cycles. Next. 1 is selected with max-

imum degree because this means that I is disjoint from only a few vertices. So if we can

fold it. we should, because there may not be a chance to fold it later. The PLA in Figure

3.1 is folded using this algorithm and is shown in Figures 3.4a - 3.4c.

This same algorithm can be used to perform simple row folding by performing

column folding on the transpose of the personality matrix. More importantly. this algo-

rithm can also handle constrained row folding for implementing PLAs with an AND-OR-

* AND or OR-AND-OR architecture. In AND-OR-AND (OR-AND-OR) PLAs. when a row is

folded to the lef t it forces all inputs (outputs) in that row to be in the lef t AND (OR) plane

-.

24

AND OR

*1 2 3 4 11 12 14 15 17 18

*represents true signal
o represents complemented signal

Figure 3.4a
PLA MAIN after folding

. .

25

PERSONALITY MATRIX

---- ----- HRHHHH-- H-----
---- 01 1- -- --
H-H11O --H---
-H11-10 -- H-H-
HH --01 --- H--
---- 00 -- 1 ---
-H- -01 ------- H

I -l-- -H-----

--1-10 ---

-1--lO -H ----

Figure 3.4b
Folded personality matrix representation of PLA MAIN

Figure 3.4c
Graph representation of folded AND plane in PLA M4AIN

Or,

26

and likewise for the row folded right. This constraint is easily satisfied by modifying the

updating algorithm for the sets U and L. Now the vertices in U which share an input with

row I must be deleted and all vertices in L which share an input with u must be deleted.

This step simply deletes the rows which cannot be folded left from the left candidate set

and the rows which cannot be folded right from the right candidate set. The algorithm can

also be used to perform mixed row and column folding. For this case, column folding fol-

lowed by row folding will be considered. An additional directed graph Grc is used to

satisfy the additional constraints imposed by column folding. In this graph the vertices

represent rows, and there is a directed edge from vertex i to vertex j if row i must be above

row j. Obviously if there are any cycles in Grc the folding is not implementable. When

two rows are folded together, their corresponding vertices are merged. So when the row

folding algorithm is run it must also check to see that no cycles are introduced in Gr"

All algorithms have a worst case running time of O(n 2). but by using sparse matrix

techniques for computing the transitive closure of ., the average running time is only

O(n). Constrained row folding or mixed row and column folding have the same time

bound because the additional constraints are checked by using a constant amount of time in

each iteration.

3.2.2.2. OPTIMAL FOLDING

There are several reasons for considering an optimal algorithm for folding PLAs.

First. the size of the PLA is limited by physical constraints. Second. the problem may be a

one-time design problem and it may be worthwhile to spend several hours searching for an

optimal solution and third, the classification of the problem as being NP-complete does not

imply an exponential-time algorithm. A problem being NP-complete refers to its worst-

case behavior. So a polynomial average time bounded algorithm may be found.

In this algorithm, the folded PLA is represented by an upper ordered set. In this

representation, the unfolded lines are ignored. An n-column folded PLA is then represented

as an n-tuple with each coordinate representing a column. The n-tuple represents the

................-..:

F 27

folded lines sorted according to the height of the cuts. Each n-tuple represents a class of

PLAs.

The optimal PLA is found by examining all possible ordered sets of'1ines. The search

proceeds by lexicographically ordering the lines and examining the ordered sets in lexico-

graphic order. To keep search time to a minimum, several methods are used to prune the

search tree [LEW 84]. First. if an ordered set of cardinality n is an implementable upper

ordered set. the n columns must be disjoint from at least n other columns, since the

unfolded lines are not in the n-tuple. If this condition is not met. then the subtree rooted at

this node can be pruned. If the current n-tuple augmented by the maximum number of

foldable columns not included in the n-tuple is inferior to the largest folding found so far,

then these subtrees can be pruned.

Two upper ordered folding sets are equivalent if they are the same size. Clearly.

equivalent foldings do not need to be examined. Also, if a PLA is rotated 180 degrees we

have the same PLA, but a different representation. Consider the upper ordered set

(al.Q2 . • ,). If every line disjoint from this set is lexicographically less than oi. then

this subtree corresponds to a 180-degree rotation of a previously examined n-tuple.

*Another method used to speed processing is to estimate a lower bound on the number

of folds in the optimal solution. This will allow the algorithm to prune suboptimal solu-

tions earlier. A good way of obtaining a lower bound greater than zero is to first fold the

PLA using a heuristic algorithm! An estimate of the upper bound of the size of the optimal

folding will enable the search to be terminated when an upper folding set of this size is

found. A simple way to obtain an upper bound is to optimally fold two smaller PLAs.

First fold the inputs, then fold the outputs. Clearly. the sum is an upper bound since there

are fewer constraints to be satisfied. A significant amount of processing time can be saved

because the algorithmic complexity is exponential in the size of the problem.r
Using the above methods to prune the search tree have worked well for both sparse

and dense PLAs. In sparse PLAs there are few restrictions on folding, so the optimal

•.., -.-... ... , -,...-,-.:...,.. .-......-...... ,..,*-, .-..-..,-..,..-
"--" "--.,m -" i..*** * " '

28

solution is found quickly. For dense PLAs the folding set is small so the optimal folding

can be found quickly. For PLAs between the two types, a lot of time is spent searching for

a solution. even though the optimal solution has been found. This is where the upper

bound to the solution is useful. Using these techniques Lewandowski was able to optimally

fold PLAs with 60 inputs and outputs using only a few minutes of CPU time [LEW 84].

3.2.3. PLA GENERATION

Generating the PLA from a folded personality matrix is straightforward. The newer

PLA generators like PANDA [MAH 84], generate multiply folded PLAs. The most common

approach is the building-block method [CHE 83], also known as the bristle-block method

[JOH 791.

In the building-block method several templates are designed. The templates contain

mask information needed to build the PLA. For instance, the generator TPLA needs 6 tem-

plates to produce a non-folded PLA. TPLA needs templates to describe the core of the AND

plane, the left and right sides of the AND plane. the top and bottom sides of the AND plane

and similarly for the OR plane. Many of the generators which produce multiply folded X

PLAs need over a hundred templates to completely describe the PLA.

The advantage of the template driven method is that the technology specific rules are

all contained in the templates. A PLA can be generated in a new technology or style by

simply changing the templates. For instance, the templates used by PANDA can be gen-

erated by using any layout editor. The template used by PANDA is actually a sample PLA

which includes an example for every possible combination of cells. Figure 3.5 shows a PLA

generated by PANDA.

3.2.4. PLACEMENT

With the advent of VLSI. the arrangement of interconnected logic blocks poses a AS

difficult combinational placement problem. The problem is how to place the blocks on the

chipin tke.smallest possible area subject to various electrical and positional constraints.

....'..,-~~~~.. "......-...•...'..... ...,...,,.

29

Figure 3.5
Folded PLA using PAND)A

30

There are several approaches to VLSI cell placement. The most popular choices are

algorithms based on the min-cut principle, quadratic assignment, iterative improvement,

and simulated annealing.

3.2.4.1. MIN-CUT PARTITIONING • "

In min-cut partitioning. the blocks are represented as nodes in a graph and intercon-

nections are represented as edges. The objective is to split the graph into q subgraphs where

each subgraph is small enough to be placed optimally. In classical placement algorithms.

an attempt is made to minimize the length of all interconnections. Usually the distance

cannot be computed exactly so the length of the minimal spanning tree is used or one-half

the perimeter of the minimal enclosing rectangle or the steiner tree length is used. Min-cut

partitioning attempts to minimize the number of edges which have vertices in two different

subgraphs.

This new objective functiun is motivated by the fact that it is easier to route a signal

through sparse channels and that the density varies along some areas of the signal net. This

objective function is similar to functions which try to minimize wiring density since the

number of signals cut by line c is a lower bound on the number of roiing tracks which

must cross c when the circuit is routed.

Since true min-cut partitioning is NP-complete [GAR 791 a heuristic algorithm must

be used. The most popular heuristics are group migration and direct methods.

3.2.4.1.1. GROUP MIGRATION

Group migration was developed by Kernighan and Lin [KER 70]. The algorithm is

developed for bisecting a graph, but can be modified to produce q subgraphs. The algorithm

is usually used recursively in VLSI placement programs to bisect each subgraph repeatedly

until they are small enough.

The algorithm works by successively improving a partition by reassigning nodes. In

order to bound the processing time, a node is only reassigned once so that the number of

.............
• -.. - . .--..:-'...,...' .-..- ... '...' '.'. .'.-.. .-. • . .- ,.- .- . --. ,,.,-......................'.......-... ..-.

31

nodes to consider is reduced. The algorithm for group migration is:

1) Partition the graph into two subgraphs A and B. This can be done randomly.

2) For every node in A calculate the net change in edges cut if this node were

moved to B. Do the same for every node in B. Set i equal to 0.

3) Choose the pair of nodes (a, .bi) that gives the best improvement in the number

of edges cut. Save the net improvement as g, .

4) Remove a, from A and remove bi from B. Recalculate the net change in the

number of edges cut for each node that is connected to a, or b,.

5) If IAI > 0 and IBI > 0. then increment i and go to 3.

6) Find a k satisfying

G =min gj
k j=0

aand movea 0 .a ak to Band moveb 0 . b1 ... bk to A. If G is less than zero

and at least one node is moved, go to 2.

Since most VLSI placement problems are very sparse, a slight modification can be

p. made to Steps 3 and 4. Instead of considering all pairs of (a,b), only the elements with the

best improvement in the number of edges cut are considered. This implies that the nodes in

A. B are sorted, so in Step 4. all the nodes that are updated must be resorted. This can be

done in time n log N. where N is the number of nodes in the subgraph and n is the number

of modified nodes. by using height-balanced trees [KNU 73]. This will only improve the

running time of the algorithm if N >> n.

3.2.4.1.2. DIRECT PARTITIONING

Direct partitioning algorithms have 3 main steps: initial grouping. seeding and alloca-

tion. The initial grouping can simply be taken as one node per group, but better partition-

ing can be achieved by using strongly connected components as groups. To determine the

strongly connected components, a directed graph is used to represent the circuit. The

.................................
"- ";-. -. ... - ; ; ; , -... ,.--. . ..-.-. "- ." - - --, " - ; - . " - -' . " " .7 ' ; ;; ' -

32

direction of the edge is taken to be from driver node to driven node. The strongly con-

nected components are then found by marking all the nodes in a depth first search manner.

In the seeding phase the groups with the most external edges (edges with vertices in

two different groups) are assigned to each of the subgraphs. Next. the rest of the groups are

allocated. A merit function, such as:

rain dPu * dAji

where

dAn, = change in Area of subgraph i if group j is included

dPj = change in number of external edges in subgraph i if group j is included

is used to determine which group will be allocated. Each subgraph also has a maximum

capacity based on the number of external edges and on the area of the graph. This is used

to insure that the subgraphs will be of nearly equal size. The allocation phase terminates

when all the groups have been assigned or when no more groups can be assigned. If there

are still groups to be assigned when the allocation phase finishes, then the seeding phase is

repeated.

3.2.4.2. QUADRATIC ASSIGNMENT

The quadratic assignment problem [GAR 79] can be stated as: given nonnegative

integer costs ct , 0 < i~j < n. and distances dkj. 0 < k.1 < m. find a one-to-one function

f{1.2..n} 1.2.....m) such that

is minimum. For our placement problem. n = m - number of modules to be placed and we

let c1 be the weighted sum of the signals common to modules i and j. In VLSI there are a

large number of sets of modules which are unconnected. The cost of placing any module in

this set is independent of where the other modules in the set are placed. So the cost func-

tion is reduced to

t
-

L' 33..

C *A

where

Ci= -" i.kdj~k
- cik -

A = set of unconnected modules.

But. this is simply the linear assignment problem, which can be solved fast and efficiently

[MUN 571. So the Steinberg algorithm for finding a good placement is to start with an ini-

* tial placement and to improve the placement of each unconnected set by applying the linear

assignment algorithm.

3.2.4.3. ITERATIVE IMPROVEMENT

This placement procedure works by systematically generating a set of modules to be

interchanged. If the proposed combination improves the placement then it is accepted.

There are several variations on which modules are chosen to be exchanged. In pairwise

interchange all possible pairs of modules are selected, whereas in neighborhood interchange

only those modules which are close to the primary module are chosen. In X-interchange. X

.. modules are chosen to be interchanged. For X-interchange only a predetermined number of

trials is attempted because the total number of possible combinations increases rapidly.

Usually the algorithm is run on ten initial random placements and the best is chosen.

* Although this method takes ten times longer to generate a placement, it is not a problem as

long as the number of modules to be placed is under 250. It has been suggested that many

initial random placements be generated. but to only use the best initial starting position. In

general, this method generates inferior placements because the optimality of the final place-

ments generated by iterative improvement schemes are not correlated to the optimality of

the initial placement.

' J 3.2.4.4. SIMULATED ANNEALING

Simulated annealing [WHI 84] is similar to iterative improvement, but instead of only

accepting states which improve the placement. those that are inferior are accepted with

-. -. -.-.....-.-.-. ,...-......... .- .- , -. -. .-..-. '.-.'..-.-.. .-. .-. .-.. ,,. ..-..-....-.. ,. -@ '

34
4k.

probability exp (-abs(dc) i T), where dc is the difference in cost between two states and T is

an arbitrary parameter with the property that as T approaches 0 the placement approaches

the optimal solution. Simulated annealing generates each new state randomly. The new

states fall into four categories: pairwise interchange, rotations. mirroring, and translations.

An important property of simulated annealing is that the new state generated can be illegal

(ie.. allowing the modules to overlap). Violations are accounted for in the cost function by

a penalty term. The penalty function has the property that as T approaches 0 the penalty

function also approaches 0. Simulated annealing programs usually consist of two loops.

The outer loop decreases T and checks for convergence, while the inner loop evaluates the

new states (Figure 3.6).

state InitialStateO;
WHILE (penalty !- 0 && !converged)

T -k T: /*k < 1.0*!
WHILE (!converged) "

newstate - MakeNewStateO;
dc = cost(state) - cost(newstate):
if (dc > 0 II random() < exp (dc/T))

state = newstate;

Figure 3.6
Structure of simulated annealing programs

3.2.4.5. HIERARCHAL ITERATIVE IMPROVEMENT

The placement method chosen for the silicon compiler is a new hierarchal iterative

improvement which has been implemented in a program called PLACE. This technique is

similar to iterative improvement, but it allows the modules to vary greatly in size. The

modules are sorted into a set of standard sized blocks. The block sizes are chosen so that

the next larger block is twice as large. This way four small blocks can be grouped together

to form a large block.

-

,,. .'..-. '. 2., ,-.. ..;..'-... .- .-.--...-..--. .-. .--.. .-.-...- .- .;''..':':2".--..'- .- . .L; .;::

- 35

The algorithm works by generating an initial grouping, which is then iteratively

improved for each level. An initial placement is then chosen for the top level blocks. This

placement is then iteratively improved.

3.2.4.5.1. PLACE DETAILS

The input to PLACE is a directory which contains all the modules in Cal-Tech Inter-

mediate Form (CIF) [MEA 80] and an interconnection file. The interconnection file has the

format

filename.label - filename.label

The output is a two level OIF file. Each symbol in the output file represents a module.

First all the modules are parsed and the size of the bounding box is determined. The

average height and width is used as the standard size block, unless the standard deviation is

within five percent of the average. In that case. the standard size block is taken to be the

average plus the standard deviation. Let h, and w, be the height and width of the standard

size block respectively. All the modules are now assigned to blocks of size

h* 2' by W5*2V

where
U<

i- j I+ 1

The blocks now enter the grouping phase. Here four small blocks are joined together

to form a large block, which is then recursively joined to three other large blocks to form a

larger block. This continues until the largest size block is formed. The largest size block is

the smallest block that will completely enclose the largest module.

- After the blocks are grouped together, the initial grouping is iteratively improved one

level at a time. starting with the smallest block. The cost is based on the number of exter-

nal connections to different modules minus the number of connections to group members.

r This cost function was chosen so that modules in the same signal net will be grouped

together.

--- ---- -

36

A random initial placement is now chosen for the top level blocks. This placement is

then iteratively improved. The cost function for improving the placement is now based on

the total length of all signal nets. The length of the net is approximated by point-to-point

distances.

3.2.5. ROUTING

After the logic blocks are designed and placed, they need to be connected together.

There are several constraints on the interconnections between blocks. Obviously, wires of

different nets must occupy different sections in the wiring track. Tracks may also be

blocked by logic blocks (no over the cell routing). Often, the technology limits the posi-

tions of vias adjacent to one another which limits the number and density of dog-legs

(bends in the net).

The wiring problem is also an NP-complete problem [GAR 791. So. many heuristic

techniques have been tried to solve this problem. The figure of merit used to evaluate the

effectiveness of the design is usually based on track overflow, total wire length, the number

of vias. and the maximum net length. To simplify the problem further, the routing is done

using only horizontal and vertical wiring tracks with a limited number of dog-legs.

The wiring problem cannot be solved by just using a series of shortest pathfinding

steps. Instead, most routers use a fast pathfinding algorithm as a subroutine. Routers try

to route each -w'ire while considering congestions on the chip. They choose the lowest cost

path and not the shortest path. Here cost is based on an estimate of the congestion. density

of tracks. number of free tracks and the length of the path. It is very difficult to compute a

good cost function for track to track resolution, so the problem is done in two stages: global

wiring and detailed wiring.

In global routing the chip is divided into an array of cells or regions. Each region con-

tains a manageable number of horizontal and vertical wiring tracks. In the first stage. nets

are allocated to the channels (set of wiring tracks along the boundary of a region). The

r3

global wiring stage ensures that all nets are routed without exceeding the channel capacity

of the regions.

One method of solving the global wiring problem is by building a steiner tree which is

* the minimum weighted tree that connects all the terminals in a net. This tree can be built

fast and efficiently by using a greedy algorithm to select the edges.

Simulated annealing has been used by Vecchi et al. [VEC 831 to produce uniform glo-

bal routes. The global routing problem is modeled by lumping all terminals into a regular

grid of N, by N. points. The edges represent the channels. The nets are then routed along

* the edges. In this representation, several nets may be allocated to an edge. This does not

violate the constraint that nets must be electrically isolated since each edge represents a

channel with several wiring tracks. Blockages in the wiring channel are accounted for by

prefilling the edges. The nets are grouped into sets of twos and then randomly routed by

using only straight and L-shaped paths (paths with only one bend). A new routing is

obtained by randomly selecting a section to move. The new state is accepted if it has lower

cost. States with higher cost are accepted with an exponential probability, so that the sys-

* tern may move out of local minimum states. The global wiring is first annealed using only

* L-shaped paths and then reannealed allowing Z-shaped paths (paths with two bends). This

method of annealing empirically produces better results faster than starting the annealing

with Z-shaped paths. The cost function used is the sum of the squares of the number of

wires on each edge. This cost function penalizes nonuniform wiring densities.

The second stage. detailed wiring, assigns each net a specific track within the channel.

* Here the routing is usually done by using the Lee-Moore algorithm [LEE 611 for finding the

shortest path. The Lee-Moore algorithm uses a breadth first search technique to find the

shortest path. The shortest path between nodes A and B is found by starting at Node A and

- marking all neighboring nodes with a direction to Node A. Then all unmarked nodes adja-

r cent to the marked nodes are marked with a direction back to Node A. This process is

repeated until the outwardly propagating wave reaches Node B.

38

Simulated annealing can also be used to perform detailed wiring. Her, the nets are

only shifted between tracks in the same or adjacent channels, since the global wiring stage -

has already found a near optimal placement for the nets.

%-

ho

....

,,! 39

CHAPTER 4

SILICON COMPILER DETALS

4.1. SILICON COMPILER LANGUAGE DETAILS

The compiler developed in this thesis is based on the C programming language

enhanced with some new features. An additional data type signal has been added. The

standard boolean operators (and. nand, or. nor, exclusive-or, exclusive-nor, and not) can be

used with this new data type. The data type signal behaves differently from the normal

type of variables. When an assignment is made to a signal, the assignment does not take on

the value of the expression, but rather it is wired or'ed with the signal. Another difference

* .with the type signal is that the value of a signal is the value that was passed at the begin-

* ning of the subroutine. If the most recent value is needed, then the operator NEW is

Mapplied to the signal. For example

x-a&b; zffixly;
y=c&d; yf=fc&d:
zfxly; x - a&b.

will generate the same circuit. While the code

x-a&b: x=a&b;
yc&d: y-c&d:

z-newxlnewy; z-a&blc&d;

are equivalent. Circuits with memory can be described by simply equating a signal with

itself. All memory elements are implicitly synchronized with the system clock.

4.2. SILICON COMPILER IMPLEMENTATION DETAILS

The silicon compiler is actually written as a collection of several programs which are

transparent to the user by using fork and exec on the UNIX operating system. The user

only interacts with the front-end program. The following functions are performed by

separate programs:

_ 1 -. ..-- .. ,; :.,'.....' :,- "

3. 40

compiling and code generation

object module linkage

executing run-time module

logic - minimizationt

PLA folding and generation.

placement of PLAs

routing of PLAst

The subprograms used in the compiler which are not developed in this thesis are from

the University of California at Berkeley (UCB) CAD tools. The UCB CAD tools were

chosen because the tools and documentation were easily obtainable from UCB.

The compiler is written in C. The compilation is done in four phases. In Phase One

the source program is preprocessed, lexical analysis is done and the program is parsed. In

Phase Two the symbol table is built, code generation and object module linking is done. In

Phase Three the code is executed and PLAs are generated. In Phase Four each of the PLAs is

placed on the chip and wired together. The calling sequence for the front-end processor is

shown in Figure 4.1.

The execution of silicon compiler code is different from the execution of a normal pro-

gram. A log of all subcircuits executed along with the values of all non-signal parameters

and external variables is kept. So when a subcircuit is called its parameters are checked

against the subcircuits already generated. If the subcircuit already exists then only the

interconnection information needs to be produced, which will decrease the time necessary to

generate a chip and will also reduce the memory requirements of the chip.

i -.4

4.2.1. PHASE I

The compiler simultaneously performs preprocessing, lexical analysis and parsing.

These three processing steps are similar to standard programming language compilers. The

t Subprogram from UCB CAD tools.

T-

41
Silicon rogra m

conmpiler

object Ifiles

Linker

subcircuit equations jjonr&amN)e~ee

Conversion to
Personality Matrix
-EQN TT7

personality matrix

Logic Minimization

Minimized Personality Matrix
netlist &

GeneratLe PLA List of Subcircuits

NMOS CMOS folded

Convert to CMOS unfolded onvert to 1
MKPLA Format PLEASURE Format

(ES2MK Convert to E2L
TPLA Format

3Generate PLA F Fold PLA
(M~rLA) [Genera Ite PLA j (LP"UE

I (~TPL-A)
Label 1/0 Convert to
(M2C1F) PANDA Format1

(ESPA)

Generate PLA
PADA)

Place SubcircI
(PLACE)~

netlist & oainsmre

Route Subcircuits subcircuit
(ROSE) I file

graphical Iinterconnection
information

Merge Subcircu its
w/interconnections

(NMERGE) i

Completed Circuit
in CIF

Figure 4.1
Control flow for front-end processor SS

42

parser is written using YACC [JOH 75] which generates an LR(1) parser [AHO 74). As the

parser builds the parse tree it calls YYLLX to get the next token. YYLEX is written using

LEX [LES 75] a lexical analyzer generator. The lexical analyzer calls the preprocessor for

the next inI racter. The preprocessor allows the user to define constants. define mac-

ros. include files, to perform conditional compilation. and have nested comments.

The silicon compiler builds a parse tree for each subroutine. It then builds a symbol

table and allocates space for variables, performs type checking and does code generation.

The compiler then repeats these steps for every subroutine in the input file. The code gen-

erated for integer statements is similar to code generated in standard programming

languages and will not be discussed further. Each signal valued statement is represented as

a boolean cover. A boolean cover is simply a set of boolean cubes. Each cube represents one

product term in a boolean expression written as a sum-of-products. The cubes consist of a

fixed length part and a variable length part. The fixed length part corresponds to scalar sig-

nal variables and the variable length part corresponds to array elements or to integer values

which cannot be determined at compile time. Each variable is represented as a 2-bit code

which is positionally dependent within the cube. The codes used are

11 - does not depend on this variable

10 - depends on true form

01 - depends on complemented form

00 null cube

These encodings were chosen so that if two cubes need to be ANDed together then a bitwise

AND is done on the two cubes. To AND two covers together. each cube in one cover is

ANDed with all the cubes in the second cover. Also the true and complemented representa-

tions of a variable are complements of each other. In this representation a 00 in any posi-

tion represents a null cube. This representation also allows two covers to be ORed by sim-

ply concatenating the two list of cubes (Figure 4.2). The compiler only performs distance-

one merging of each cover and subsumption since global minimization during compilation is

.. %. .°-°'.- °' '.'. . " " "..,.- ° , r

E 43

expression boolean cube
a b c

b 11 1011
ac 10 11 10
abc 10 10 10
5.c 100110

b5 (null) 110011

Figure 4.2
Boolean cube example

a waste of time because not all covers will be included in the final PLA. and different parts

in the variable length part of the cube may represent the same variable. Before the cover is

merged, the nonessential vertices are removed. This greatly reduces the size of each cube,

which in turn speeds up the merging process. In distance-one merging the cubes are sorted

and any adjacent cubes which differ in one or less parts are ORed together. This is similar

to merging two implicants in a Karnaugh map (Figure 4.3).

Figure 4.3
Karnaugh map representation of distance-one merging

Distance-one merging is a fast operation requiring O(kn log n) time where n is the number

of cubes and k is the number of parts. While the cubes are being sorted, subsumption of

cubes is checked. Cube A covers Cube B, if (bitwise) NOT A AND B is zero. Theoretically,

performing subsumption after distance-one merging should produce better results. but in

F.

• . .- . .. , , , . . ,. . , - .- , -. .. . -_ ., ," . - .' . ', .. , ,. .. .* - .. '. -.*", -' , ',..-... ,

44

practice performing subsumption before merging produces equally good results.

Complementation is performed by recursively applying the Shannon expansion.

f Xf, + f"

T =xT, + XT,
where f , and T, are cofactors.

If f is unate and monotone increasing then
i-4

T XT, + T,

or if f is unate and monotone decreasing then

T=XTr + T,

Since complementation of a unate function is well understood and can be performed

quickly, we try to make f. and f. unate as quickly as possible. The heuristic suggested

uy Brayton [BRA 82] is to choose the most binate variable to do the splitting. Choosing the

most binate variable attempts to keep cubes which are both part of f , and f , as small as

possible. Also since the cofactors may not be represented by prime implicants. a cofactor

may actually be unate even though the covers are not unate. This method of complement-

ing a function is about twice as fast as complementation by computing the disjoint sharp

[HON 74]. This method also produces fewer product terms.

4.2.2. PHASE II

After all the subroutines are compiled, they are linked together. The linker merges all

the object files and resolves all subroutine entry points and global variables. The resultant

file can then be executed. The execution of a silicon program is different from conventional

programs. In the silicon program a hashed-list of all subroutines and the value of all

.

|W

45
i-i

integer parameters and integer global variables is kept. If a subroutine is called again with

identical integer parameters then the PLA specification is not regenerated, and only the new

interconnection information is generated. This speeds up the execution time and saves

memory, since 90 percent of a VLSI circuit are regular structures.

The PLA specification file is written as a set of two-level boolean equations using

AND, OR and negation of single variables. This format was chosen instead of a personality

matrix representation because this form is easier to read and modify.

4.2.3. PHASE IM

Logic-minimization is performed by a separate program so that new programs to do

logic-minimization and partitioning can be easily incorporated. This way logic minimizers

with different critera. such as minimizing the number of implicants. area or speed. can be

added. For instance, if one decides to use true static CMOS PLAs then the logic-minimizer

must partition each equation so that no implicant has more than four terms, otherwise the

speed of the PLA will be severely degraded.

The logic equations generated from executing the silicon program is converted to a per-

sonality matrix using EQNTOTT. This personality matrix is then minimized using

ESPRESSO. The resultant file is then used to generate the PLAs. Up to this point, all cir-

cuit specifications have been technology independent. At this point the circuit is tied to a

particular technology. Currently. the circuit can be designed in two technologies: NMOS

and CMOS. The PLAs are generated from three different PLA generators: MKPLA. TPLA.

and PANDA. MKPLA is used to generate unfolded NMOS PLAs. TPLA is used to generate

, ~..static CMOS unfolded PLAs using p-channel devices as resistive pull-ups. PANDA is used

to generate multiply folded static CMOS PLAs. Both TPLA and PANDA are technology

independent PLA generators which are template driven. So to modify the compiler to gen-

erate circuits in new technologies or to improvements in technology, one just has to design a

new template. Or. an entirely new program can be used in place of the three PLA genera-

tors as long as the new program generates the subcircuit in CIF format. Also, since the

"........................... ?....... ,

46

subcircuits are in CIF format, they can be edited using any layout editor if the perfor-

mance of the subcircuit does not meet specifications.

Each of the three PLA generators accepts the PLA specification in a different format.

The front-end program automatically invokes the proper conversion routines before gen-

erating the PLA. For instance, the PANDA program generates a PLA from a folded per-

sonality matrix. The front-end program first takes the output from ESPRESSO and con-

verts it to a format compatible with PLEASURE which will do the folding. Another

conversion routine is then automatically called to convert the PLEASURE output into a

form usable by PANDA. Finally, PANDA is invoked and a PLA is generated.

4.2.4. PHASE IV

The PLAs are then sent to PLACE. which merges all the individual CIF files and places

the PLAs on the chip. PLACE uses hierarchal iterative improvement to determine a near

optimal solution. PLACE generates three output files: rose.in. ckt.stat. and ckt.plc. The file

rose.in contains the netlist and location of the subcircuits and the terminals. The file ckt.plc

contains the definitions for all the subcircuits and the file ckt.stat contains information

necessary to merge the graphical interconnection file with ckt.plc. The graphical intercon-

nection file is generated from rose.in by using the program ROSE. ROSE routes all the

-. interconnections using a Steiner-tree-on-graph algorithm. The interconnects are routed

using two layers: polysilicon and metal. Another program MERGE then merges the graphi-

cal interconnection file with ckt.plc to generate a completely wired circuit. The circuit can

now be sent to a silicon foundry for fabrication.

4.3. DESIGN EXERCISE

For this study. I have designed a 16-bit fixed point processing element using the silicon

compiler. The processing element is to be used for performing LU factorization of parti-

t Most layout editors do not work with CIF les directly. but provide conversion routines to
translate the CIF format into an internal format and from the internal format to CIF.

m',7

47

tioned systems [LUI 84]. The processing element performs four functions:

(1) Am = A - LT* Uk

(2) Lm = A- / u'n

.?(3) UkT AM,7

m ~~(4) A m + = Am7 + L-T +v:

Function (1) updates the matrix elements. Functions (2) and (3) compute the lower

and upper triangular factors respectively. Function (4) sums the elements together at the

interconnection level.

From the above functional specification, we need to design a 16-bit multiplier, divisor,

and adder. A top-down approach is chosen to design the processing element. The argu-

ments to the main circuit specify the I/O pin assignments to the integrated circuit. Then

the logic block diagram (Figure 4.4) is converted into silicon compiler statements. Each of

the functional blocks in the diagram is implemented as subcircuits.

Now each of the subcircuits needs to designed. Both the multiplier and the reciproca-

tor are implemented as cellular arrays. Both subcircuits make use of two-dimensional sig-U
nal arrays to specify all the interconnections between cells. If we look at the PLA gen-

erated from the multiplier specifications (Figures 4.5, 4.6), we see that the outputs

correspond to signals that are the result of some boolean operation which is input to

another subcircuit. So the use of temporary signal variables does not affect the size of the

PLA that will be generated.

The silicon compiler also checks to see if the non-signal arguments to a subcircuit have

changed. If they are the same as in a previous call the code is not reexecuted, but instead

only new interconnection information is generated. For instance, reciprocator calls subcir-

cuit CAS 256 times, but only one equation file is generated. This not only speeds up execu-

tion time of the silicon program, but it also saves time in minimizing the equations, time

I-

• . .-. -'. ." ."< : " ." ." "., . -. .".. . ..' 'v :.".". .. ., .. -.".. -.'-"--':'.:',"-"-. -. -: : .: -: -.--- :'-:',"--':--? ." i ,,..

48

Loo A.U. I0P

Cyl
02 Sy a A 6a WO 02C

L"II

SS

Mu9

PI~ to

91-Fgur 4.4-Cv
Lo scbokdarmfrC O rcsigeeet~. 4

#define WORDSZ 16

mult (a.b.c.ovfl)
input signal a[WORDSZI. b[WORDSZI;,
output signal ci WORDSZ]. ovf 1;

1* form the multiPlication of a and b by using an array
* of full adders

c* ca *b
* ovfl -I if overflow

int i. j:
signal p[WORDSZ+i]. s[WORDSZI[WORDSZ]. co[WORDSZI[WORDSZ+1]. gnd:.

c[03 - a[01 & biol;
for (i-WORDSZ-2: i-:)

addO (aui-h & b[01. a[i] & bil]. gnd. sti][0]. coDIiO]):
C[I I new S[01[0l;
for (j - 1: j < WORDSZ - 2; j-s-i-

for 0i-WORDSZ -3; i-;)
addO (new sfi+h1i i-il, new colilli-il. afi] & b[j+lI.

sililbi]. coilllD;
addO (at WORDSZ-2] & bij]. new co[lWORDSZ-2]i j-i].

at WORDSZ-3] & biji1 I. siWORDSZ-21(j], coilWORDSZ-2h[ji):
c[j+i] - new s[o]i il;

U ~for 0-0:; i < WORDSZ-3; i++-i)
addO (new s[i-s-][WORDSZ-3]. new co[ii[WORDSZ-3]. gnd.

si[WORDSZ-2]. co[i][WORDSZ-2]);
addO (aiWORDSZ-21 & bIWORDSZ-21. new coilWORDSZ-21[WORDSZ-31, gnd.

s[WORDSZ-21[WORDSZ-21. coilWORDSZ-21i WORDSZ-2]);,
for 0-0O: i < WORDSZ-2: i++)

* add2 (flew s(i]iWORDSZ-21, a[WORDSZ-1I & bi]il aili] & biWQRDSZ-1I.
s[i][xvORDSZ-1l, coii]iWORDSZ-1 I);

c[WORDSZ-1] = new siO~iWORDSZ-1]:
add2 (new co[lWORDSZ-3]iii. aiWORDSZ-1] & bili], aili] & bIWORDSZ-1].

* stiltWORDSZ-1]. co[i][WORDSZ-1 1);
add2 (new sih]iWQRDSZ-1]. new coiOl(WORDSZ-1]. gnd. p[0l.

coiOh[WORDSZI);
for 0-=O: ++-ii < WORDSZ-2:)

add2 (new si-s]iWORDSZ-1]. new co[i]iWORDSZ-1].
new coli- 1]WORDSZI. pili]. co[i][WORDSZ]):

add2 (a[WORDSZ-1] & biWORDSZ-iI. new co[WORDSZ-2][WORDSZ-1],
new coiWORDSZ-3]IIWORDSZ-1hI p[WORDSZ -1]. p[WORDSZ]):

chkovf (p.ovf 1):
/* end.of mufrrj

* r Figure 4.5
Silicon program code for multiplier

50

spent attempting to fold the personality matrix, and time spent generating the PLA.

-. 4

.. AWNI

.... '.

Figure 4.6
Multiply folded PLA mult_5

After running the silicon compiler program. 14 equation files corresponding to 14

unique calls to subcircuits are generated. The equation files are then converted into a per-

sonality matrix and sent to ESPRESSO to do logic minimization. The minimization done at

-. " run time considers each logic function separately and is used mainly to keep peak memory

requirements down. The algorithm used at run time is of order O(nk log n) where n is the

number of product terms and k is the number of variables in the function. On average, the

run time algorithm is able to reduce peak memory requirements by 75 percent. The minim-

ization done by ESPRESSO considers all output functions together and is able to reduce the

number of product terms in the personality matrix by another 20 percent.

At this point, the user must decide on the technology to implement his chip.

- Currently. the chip can be implemented in NNIOS or CMOS p-well. The CMOS PLAs are

generated by using two template driven PLA generators: TPLA and PANDA. TPLA is used

L -.
. . .- T . -- -- -

51

17

Figure 4.7
Chip designed using silicon compiler

I I~~ I -- -II - . ! i I I. -- -I,.,:-

52

for nonfolded PLAs and PANDA for multiply-folded PLAs. The CMOS PLAs are static

PLAs using CMOS pullups. Currently. only the CMOS templates have been designed so the

NMOS PLAs are generated by using MKPLA. which also generates static PLAs. In the fu-

ture. templates for both static and dynamic NMOS and CMOS dual-well PLAs will be

designed. If the user chooses to generate his PLAs using PANDA, the personality matrix is

first folded by using PLEASURE. a heuristic folding program. The user may wish to gen-

erate both folded and nonfolded PLAs and choose the smaller of the two. In this design ex-

ample. CMOS multiply-folded PLAs are chosen. The PLA generated for the multiplier code

in Figure 4.5 (p. 49) is shown in Figure 4.6 (p. 50).

The CIF files are then read by PLACE which concatenates the files and finds a good

placement for the subcircuits using a hierarchal iterative improvement technique. The con-

catenated CIF file is then sent to ROSE which interconnects the subcircuits using a steiner-

tree algorithm. The output from PLACE and ROSE is sent to MERGE, which merges the

subcircuits with the interconnections. The completed circuit can be seen in Figure 4.7 (p.

51).

compile and load silicon program
% ss add.si mult.si recip.si main.si mux.si register.si
run program
% ss -run
minimize equations
% ss -min
generate CMOS folded PLAs
-fold - specify folded PLAs
% ss -cmos -fold
place subcircuits
% ss -place
interconnect subcircuits
% ss -route
'i# circuit is now in ckt.all.cif

Figure 4.8
Command sequence to generate circuit from behavioral

specification (Comments in italics)

L, -

• • -"-"-"."-"-"................."" .•- • ""._.. " , %. .' -•--. .", ", .% ,

i -53

- fi. The resultant chip can then be extracted and simulated. If the circuit does not meet

specifications. then the silicon program can be modified to improve performance. Such a

modification is the subject of further research.

The circuit used in this study was generated using the command sequence shown in

Figure 4.8 (p. 52). The front-end processor. SS, automatically chooses the correct filters at

each stage of the circuit design. For example, all three PLA generators require a different

input format. Also. the entire circuit could have been generated with a single call to SS

instead of 6. by concatenating the arguments. The front-end processor will automatically

- invoke the other programs in the correct order.

I..

t:.
..

... ,

. .

,...:.

3

54

CHAPTER 5

CONCLUSIONS

This thesis investigates the feasibility of designing circuits using a high-level language

to specify only the behavioral aspects of the circuits. A silicon compiler is used to take this

description and transform it into the mask-layers for fabrication. This approach to design-

* .ing circuits is expected to be a powerful tool which will greatly reduce the design time. The

silicon compiler could successfully compete with the semi-custom approach to designing

S-circuits.

The compiler synthesizes the subcircuits as PLAs. PLAs are chosen because they are

regular structures which are easy to customize and readily adaptable to changes in technol-

ogy. The new features can be incorporated in a matter of hours by just redesigning the

templates used by the PLA generator. However, the PLA generator used in this thesis does

not allow the user to use different transistor sizes. With this restriction, the circuits pro-

duced are only as fast as gate-arrays. In future versions of the compiler, the transistor

sizes will be based on fan-out and parasitic line capacitance. In addition to the speed

penalty. the area penalty is much too high. Even with multiply-folded PLAs. the area

penalty is still large. The problem with multiply-folded PLAs is that the area saved by

folding may be completely negated by the additional buffers placed on the other sides of the

PLA. This usually happens in small PLAs since folding only reduces the size of the core.

To solve this problem. the programming style of the designer could be changed to promote

large PLAs. or the compiler could restructure the code to produce large PLAs. or a cell J

library like those used in the semi-custom design approach could be included.

:A
The first alternative is the easiest to implement. but is the least desirable method.

Forcing the designer to think in unaccustomed ways may lower productivity. The best

approach would be to both restructure the code and to use a cell library. The cell library

approach is effective because many small subcircuits are in a cell library. Also most bit-

...

-55

slice circuits waste a lot of area when implemented as PLAs. A disadvantage to the stan-

dard cell library approach is that the library is technology dependent, so changes in tech-

nology will be harder to implement.

Currently the only method of verifying the correct operation of the chip is to extract

the circuit after the subcircuits have been generated or after the entire chip is generated. To

aid the designer, the compiler should generate code so that logic simulation can be per-

formed without having to generate the subcircuits. This way the designer would not have

to waste hours of CPU time generating a circuit that was logically incorrect. Then when

the designer is confident that the circuit is logically correct, he could generate the circuit

and verify the performance with a timing simulator.

The majority of the time spent in synthesizing the circuit is in placement and routing.

One way to speed up the placement and the routing would be to reduce the number of sub-

circuits and the number of terminals that need to be connected. One method of doing this is

to generate the subcircuits inside loops such that they will abut. Then the entire loop

should be treated as a single large subcircuit. Since most of the circuits designed are bit-

slice architectures with word sizes of 16 or 32. the potential savings in time could be great.

-.

f- '.............:..........,.-.......... ,... .,,..

56

APPENDIX

The following program (Figures A.1 - A.14) is used to generate the special purpose

processor for LU factorization, which is described in the design example in Chapter 4. All

PLAs and mask descriptions used in this thesis are derived from the following program.

- , . 0

. -9

.

V 57

*define WORDSZ 16

main (Avin.Ain-outsell .selOUout.Uvout.Lvin.Lin .cyl1 cy2 .Uin.Uvin.Lout.
Lvout.parity.overf low .ckl)

input signal Avin. sell. selO. Lin[WORDSZ/ 21. Lvin. cyl. cy2.
Uin[WORDSZ / 2 1. Uvin. ck 1;

output signal Uout[WQRDSZ/ 21. Uvout. LoutIWORDSZ/ 2], Lvout. parity.
signl Amoverflow, Avout:
sigal iout[WORDSZ/ 21:

* signal Amuxcntl. Lmuxcntl. Umuxcntl. Mparity. Aparity. Movfl, Aovf 1.
abmux. ulmux. NotS[WORDSZ]. BM[WORDSZ]. AMfWORDSZ]. BA[WORDSZ].
AA[WORDSZ]. Ain[WORDSZ]. Aout[WORDSZ]. ff4]. Addout[WORDSZ].
Mulout[WORDSZ]. Linl6[WORDSZ], Ubinl6[WORDSZ]. Recout[WORDSZ];

* int i:

* . 1*define function switches
* f[0I = sell & selO:

ff1] =-sell & selO:
f[2] = sell & selO;
f[31 - sell & selO:

r latch inputs *
register (Ain _out.Ain,cyl.cy2):
register (Lin.Linl6.cyl .cy2);
register (Uin.Uinl6.cyl .cy2):
overflow = Movf 1 & new ff111I Aovfl & new ff1];
parity = Mparity & new f[f1] I Aparity & - new f l1;N 1* form Vi/A or)/Uinl6 *

* Umuxcntl = new f[3] & cy2 & Uvin;
mux (Ain.Uinl6.new Umuxcnl.Uout):

- recip (Uinl6.Recout):
form Ain/Uin16 or Lini6 * UinI6 *

abmux = 'Cnew ff[111I new ff[01):
I mux (Ain.Linl6,new abmux.BM):

mux (Recout.Uin 16. new abmux.AM):
mult (AM,BM.Mulout.Movfl):.
Lmuxcntl - new f[l] & cy2 & Lvin;

. mux (Lin 16 Muloutnew Lmuxcntl.Lout):
1* form Ain + Lini6 + UinJ6 or Ain - LinJ6 *Uini6 *

ulmux = Tnew ff3] I new ff1] I new f[01);
for (G - WORDSZ: i BAfi - Uinl6fi] & new ulmux:
BAfO] = Uinl6fi] &new ulmux I 'new ulmux:
muxinv (Linl6, AMnew ulmux.AA).
add3w (BA,AA.Ain.Addout.Aovfl0:
Amuxcinl - -Avin & cy2 I cy2 & new ff2] & Avin:
mux (Ain.Addout.new AmuxcntlAout);
Uvout = Uvin & cy2 &-(new f[2]) I new ff21 & cy2 & Uvin & [yin & Avin:

. Avout - cy2 & Uvin & Lvin & Avin;
[vout - Lvin & cy2 &-(new ff1]) I new ffl] & Uvin & Lvin & Avin;

/*edo an
Figure A.1I

58

recip (diviST.quot)
input signal divisr[WQRDSZ):.
output signal quot[WORDSZ]:

signal Gnd. VDD, C[WORDSZ](WORDSZ]. s(WORDSZ](WORDSZ];
mnt i. j.

form the reciprocal of divisr and place result in quot
* the reciprocal is formed by using an array of controlled
* add/subtract cells (cas)

cas (VDD.divisr[WORDSZ- 1]VDD.VDD~s[WORDSZ-1 I 0.C(WQRDSZ- 1)
for 0(- WQRDSZ-1: i-;)

ca-s (VDD.divisr(iLGnd new C~i +1](O].s~il(O1. C~i 1(01)
I
quot[0] = new C[01[01:
for (j - 1; j < WORDSZ - 1: j++) I

ca-s (new C[OJ[j- 1 I.divisr(WQRDSZ- 1 Inew s[WORDSZ-1][j-I1.,
new C(0][j-1]. s[WORDSZ-1 1(0]. C[WORDSZ- 11(0]):
for 0i - WORDSZ-1: i-:)
cas (new C(O]j-1].divisr~i].new s[i+l1j-11.new C~i+11j1.

s~d[j]. CE ii ii:
I
quotE ii - new C(O](j];

/* end of recipU*

Figure A.2

CLAgen (x~y.p.g)
input signal x[4]. y[41:
output signal p[4). gI 4);

generate p &g for carry look-ahead
mt i:

for 6i-0: i < 4: i++)
pD)] - x~i] ~l
gi - x~iI & y~iI:

/* end of CLAgent)/

Figure A.3

59

register (Dataln.DataOut.cv I. cy2)
input signal Dataln[WORDSZ,' 2]. cylI. cy2:

output signal DaLaOut[WORDSZ]:

signal A[WORDSZ], B[WORDSZ]:
imt i:

* - /* latch high order bits ~
for (i -WORDSZ: i-- > WORDSZ/ 2:) 1

SAf i] = Mi] & -cy2 I Datain[WORDSZ - I - ii & cy2;
Bli] =B~i] & cy2 I AMij & cy2:

/* latch low order bits *
for G(- WORDSZ / 2: i-:)

Mi -AMi] & cy I I Dataln[i] &cy 1
B~i] - Bfil & cyl I A[iJ & -cyl:

for (i-WQRDSZ: i-:)
Dataouti] -=~]

1 /* end of register()o

Figure A.4

BCLA (pO.pi .p2.p3 .gO.gl .g2 .g3 .cin~cO.clI.c2.c3)
input signal cin.pO.p l.p2 .p3 .gO.gl .g2 .g3:

p output signal cO.cl.c2.c3;

1* 4-bit Block Carry look-Ahead unit *

cO - gO I cin & pO:
ci - g I new cO & P:
c2 - g2 I new ci & p2:
03 = g3 I new c2 & p3;

1* end of BCLAI'*

Figure A,5

60

Bsum (c.ps)
Input signal c[WORDSZI.p[WORDSZJ:
output signal s[WORDSZ]:

add two words together using output from BLOCK look-ahead
* unit

lint i.

signal gnd:

sf0] = p[01;
for 0i WQRDSZ: -- i:)

I ~ /* endof BsmO*

Figure A.6

add3w (x.y.z.s.Cout)
input signal x[WORDSZ], y[WQRDSZ]. z[WORDSZ);
output signal s(WORDSZ). Gout:

1*- x + y+ z
* reduce three operands to one by using two two-word adders

in series

Signal tmp[WORDSZ]. p[WORDSZ]. g[WORDSZ]. pt[WQRDSZJ. gt[WQRDSZ). grid.
c[WORDSZ]. ct[WORDSZ]:

iut i;

1* tmp-x+y*/ -

CLAgen (x.y.p.g);
BCLA (p(0].p[l.p[21.p(3].g[0].gf I .g[2].gf 3].gnd.c[Ol.cll].c[2].c[3]):
for (0 - 4: i < WORDSZ. i +- 4)

BCLA (p~i].pfi+1].p[i+2].pfi+3].gi.gfi, I .gfi+2].g[i+3.ci-1].
c~i).c[i+I].c(i+2]. c~i+3]):

Bsum (c.p~tmp):-
1* s = mp + z 8

CLAgen (Lnip.z.pt.gt):
BCLA (pt[O).ptilI .pt[2l.pt[3].gt[Olgt[IIlgtl2].gtf 3).gnd .cd[O].ct[1).

ct[21Lct[31))
for (G - 4. < WORDSZ: i +- 4)

BCLA (pt[iipt[i+ I]pt[i+2].ptdi+31.gti]).gtli+1].gt[i+21.gtfi+3].
dti-1], ct[i].ct[i+l].cdi+2]. ct[i+31):

Bsum (ct.pt.s):
I i'~ end of addiwo)*

Figure A.7

VP, ~ ~...* ~ J '-

- - - - -' -. r. -

61

chkovf (povf 1)
input signal p[WORDSZ+I I:
output signal ovf :

or bits together to see if result has overflowed
*/

int i:

ovfl = p[WORDSZ]:
for (i WORDSZ: i-:)

ovfl new ovfl I phi]:
""} / * end of chkovf() *

Figure A.8

addO (x.y.z.s.c)
* input signal x. y. z;

output signal s. c;I
]-bit full adder cs= x + y + z

* where c = carry
• S = SUM1

s = z & (x & y I x & y) I (x y) & z;
c•=x&yly&zlz&x:

end /*e of addO()*/

Figure A.9

add2 (x.y.z.s.c)
input signal x. y. z:
output signal s. c:

/* 1-bit full adder (-c)s = -x - y + z

* where c = complement of carry

* = SUM

s=z&(x& v x& v); (x v) & z:
C - X & y lIy & zl x & z;
I+. /* end of add?() NI

Figure A. 10

". -
I .; ~-*~.: -- *U

62

mult (a.b.c.ovflI)
input signal a[WORDSZ]. b[WORDSZ]:
output signal c[WORDSZ]. ovf 1:
I L

form the multiplication of a and b by using an array
* of full adders

* c-a*b
* ovfl = I if overflow

*1t 1.j
signal p1 WORDSZ+1ii s[WORDSZ]IWORDSZ]. co[WORDSZ][WORDSZ+ I]. grid:

c[O] - a[O] & bNO];
for (i=WORDSZ-2: i-:)

addO (afi+l] & b[O]. ati) & bIl. gnd, sti]0. cotiltO]);
cl] -. new sto][0l: -

for Q 1; j < WORDSZ -2: j++)I*
forGi- WORDSZ -3: i-:)

addO (new s[i+l[j-l]. new co[i][j-1l. at ii & Nj+ 1].
stilt ji. COtil[j]):

addO (a[WORDSZ-2] & biji. new co[WORDSZ-2]j-1l.
ctj1 = a[WORDSZ-3] & b~j+ ii. s(WORDSZ-2 l[j]. co[WORDSZ-2](jI):

c~+II-new s[O1tjl:

for 0-0O: i < WORDSZ-3: i++)
addO (new s~i+l]EWORDSZ-31. new co[i][WORDSZ-31. grid.

stilt WORDSZ-2]. co[iI[WORDSZ-2]):
addO (at WORDSZ-2] & b[WORDSZ-21. new cot WORDSZ-2]t WORDSZ-3]. grid.

s[WORDSZ-2]IWORDSZ-21. cot WORDSZ-2][WORDSZ-2]):
for 6i-0: i < WORDSZ-2: i++)

add2 (new stilt WORDSZ-21, a[WORDSZ-I] & Nil. ati] & b[WORDSZ-l].
s~i][WORDSZ-l]. co~i][WORDSZ-1l);,

ci WORDSZ-ll - new s[O][WORDSZ-l];
add2 (new co[WORDSZ-3lti]. a(WORDSZ-l] & Ni]. alil & b[WORDSZ-1].

stilt WORDSZ- 11. cot ill WORDSZ- 11):
add2 (new stlt WORDSZ-1 I. new coIOIWQRDSZ-1]. gnd, p[O].

cotOIWORDSZ]):
for (0-0: ++i < WQRDSZ-2:)

add2 (new sfi+ I itWORDSZ- 1]. new cotdt[WORDSZ- I].
new co~i-]EWORDSZ]. p(i). co~i][WQRDSZD):

add2 (a[WORDSZ-I] & b[WORDSZ-1). new co[WORDSZ-2][WORDSZ-1].
new cot WORDSZ-31 WORDSZ-l]. p[WORDSZ -1]. pIWORDSZI):

chkovf (p.ovf 1):
/* end of mudto

Figure A.lIl

p".

63

rnux (A.B. cntl.out)
input signal A[WORDSZ]. B[WORDSZ]. cntl:
output signal out[WORDS/I:

multiplex inputs A and B *
int i:

for (0 - WORDSZ: i--;)
Outdi] -AMi & cntl I B[i] & cntl:

/* end of muxo)*

Figure A. 12

mauxinv (A.B. entLout)
input signal A[WORDSZ]. B[WORDSZ], cntl;
output signal out[WORDSZ]:

1* muliplex inputs A and not B
int i:

for Ci - WORDSZ: i-:)
out~i] =A~i] & cntl I _B[i] & -cnti;

* .) /* end o muxnv()*

Figure A. 13

cas (P.Bi.Ai.Ci.Si.CipI)
input signal P. Bi. Ai. Ci:
output signal Cipi. Si;

1* Controlled Add/Subtract cell
* *PP-I subtract

*~ aodd
* Ci - carry in

-. *Si -result
* Cipi carryv out

Si- (Bi P) Ai Ci:
Cipi Ai & (Bi P) I (Bi ^P) & Ci IAi & Ci.

) Is~/ end of cas(o*

* Figure A. 14

64

REFERENCES

[AHO 74] A. V. Aho and S. C. Johnson. "LR Parsing," Computing Surveys, June 1974.

[BAR 81] M. Barbacci. "Instruction Set Processor Specifications (ISPS): The Notation and ".9

its Specification," IEEE Transactions on Computers, vol. C-30. pp. 24-40. Janu-
ary 1981.

[BRA 82] R. K. Brayton. J. D. Cohen. and G. D. Hachtel. B. M. Trager, D. Y. Y. Yun.
"Fast Recursive Boolean Function Manipulation." International Symposium on
Circuits and Systems, pp. 24-40, May 1982.

[BRA 84a] R. K. Brayton, G. D. Hachtel. C. T. McMullen, and A. Sangiovanni-
Vincentelli, "ESPRESSO-Il: A New Logic Minimizer for Programmable Logic
Arrays." Custom Integrated Circuits Conference, pp. 370-376. May 1984.

[BRA 84b] R. K. Brayton, N. L. Brenner. C. L. Chen, G. DeMichelli, C. T. McMullen. and
R. H. J. M. Otten, The Yorktown Silicon Compiler, IBM Technical Report. 1984.

[BRE 841 Norman Brenner, "The Yorktown Logic Language: An APL-like Design
Language for VLSI Specification." International Conference on Computer
Design, pp. 11-15, October 8-11. 1984.

[CHE 83]" N. P. Chen, C. P. Hsu. E. S. Kuh. C. C. Chen. and M. Takashi. "BBL: A Build-
ing Block Layout System for Custom Chip IC Design," International Confer-
ence of Computer-Aided Design, pp. 40-90, 1983.

[CHE 84] Edmund K. Cheng. "Verifying Compiled Silicon," VLSI Design, pp. 70-74. Oc-
tober 1984.

[DEN 84] L. Z. Deng. E. L. Leiss. and B. C. Mclnnis. "A Refinement of the Quine-
McClusky Algorithm by Using Presorting," submitted IEEE Transactions on
Ciruits and Systems, November 1984.

[ELL 82] S. A. Ellis. K. H. Keller. A. R. Newton. D. 0. Pederson. A. L. Sangiovanni-
Vincentelli. and C. H. Sequin. "A Symbolic Layout Design System," Interna-
tional Symposium on Circuits and Systems, vol. 2. pp. 670-676. May 10-12. -

1982.

[FEL 83] Stuart I. Feldman, "The Circuit Design Language Xi." International Conference
on Computer Design, pp. 652-655. 1983.

[GAJ 84] D. D. Gajski and J. J. Bozek. "ARSENIC: Methodology and Implementation."
Proceedings of the International Conference on Computer-Aided Design, pp.
116-118, November 1984.

[GAR 79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness, Murray Hill. NJ: W. H. Freeman and Com-
pany 1979, pp. 209.218.

'V 65

[HAC 82] G. D. Hachtel. A. R. Newton. and A. L. Sangiovanni-Vincentelli. "Techniques
for Programmable Logic Array Folding," 19th Design Automation Conference,
pp. 147-153. 1982.

[HAY 84] Frederick Hayes-Roth. "The Knowledge-Based Expert System: A Tutorial."
IEEE Computer, pp. 11-28, September 1984.

[HON 74] S. J. Hong. R. G. Cain. D. L. Ostapko, "MINI: A Heuristic Approach for Logic
Minimization," IBM Journal of Research and Development, pp. 443-458. Sep-

p tember 1974.

[JOH 751 S. C. Johnson, Yacc: Yet Another Compiler Compiler, Computer Science Techni-
cal Report no. 32, Bell Laboratories. Murray Hill, NJ 1975.

[JOH 79] D. Johanssen. "Bristle Blocks: A Silicon Compiler." 16th Design Automation
Conference, pp. 310-313, 1979.

[KAN 81] S. Kang and W. M. vanCleemput. "Automatic PLA Synthesis from a DDL-P
Description." Proceedings of the 18th Design Automation Conference, pp. 391-
397, June 1981.

[KER 70] B. W. Kernighan and S. Lin. "An Efficient Heuristic Procedure for Partitioning

. Graphs." The Bell System Technical Journal, vol. 49, pp. 291-307. 1970.

[KER 78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language,

Englewood Cliffs. NJ: Prentice-Hall. INC. 1978.

[KNU 73] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching,
Reading, MA: Addison-Wesley Publishing Company. 1973.

[LEE 61] C. Y. Lee. "An Algorithm for Path Connections and Its Applications." IRE
Transactions on Electronic Computers, vol. ECIO. pp. 346-365, September
1961

[LES 75] M. E. Lesk. Lex - A Lexical Analyzer Generator, Computer Science Technical
Report no. 39. Bell Laboratories. Murray Hill, NJ. October 1975.

[LEW 841 J. L. Lewandowski and C. L. Liu. "A Branch and Bound Algorithm for Op-
timal PLA Folding," 21st Design Automation Conference, pp. 426-433, 1984.

[LUI 84] Kin-man Ivy Lui. Special Purpose Computer Architecture for LU Factorization
of Partitioned Systems, University of Illinois at Urbana-Champaign. Report
R-1015 UIUL-ENG 84-2209. August 1984.

[LUR 84] C. Lursinsap and D. Gajski, "Cell Compilation with Constraints." Proceedings

of the 21st Design Automation Conference, pp. 103-108, June 1984.

, [MAH 84] Grace H. Mah. "PANDA: A PLA Generator for Multiply-Folded PLAs." IEEE
International Conference on Computer-Aided Design, ICCAD-84, pp. 122-124.

: j": November 12-15. 1984.

[MEA 80] Carver Mead and Lynn Conway. Introduction to VLSI System, Reading. MA:
Addison-Wesley Publishing Company. 1980.

.'6'

"::~~~~~~~~~~~~~~~........-...... . .-." -.-. ...- ".. .".". ':.:.-'.
• •. o .. . -" .*"o .

•
". ."". .

°
. '"*. " . - . . ." ' * . . . ". " h ! o * ,J". - .. .

66

[MUN 571 J. Munkres. "Algorithms for the Assignment and Transportation Problems."
Journal SIAM, vol. 5, pp. 32-38. March 1957.

[NEW 85] A. R. Newton. D. 0. Pederson. and A. L. Sangiovanni-Vincentelli. "Design
Aids for VLSI: A Perspective Revisited." IEEE Design and Test of Computers,
pp. 106-115. April 1985.

[SOU 83] Jay R. Southard. "MacPitts: An Approach to Silicon Compilation." IEE" Com-
puter, pp. 74-82, December 1983.

[THO 83] Donald E. Thomas. Charles Y. Hitchcock III. Thaddeus J. Kowalski. Jayanth
V. Rajan. and Robert A. Walker, "Automatic Data Path Synthesis." IEFEE Com-
puter, pp. 59-64. December 1983.

[VEC 83] Mario P. Vecchi and Scott Kirkpatrick, "Global Wiring by Simulated Anneal-
ing," IEEE Transactions on Computer-Aided Design, vol. CAD-2. no. 4. pp.
215-222, October 1983.

[WHI 84] Steve R. White, "Concepts of Scale in Simulated Annealing," International
Conference on Computer Design, pp. 646-651. October 8-11, 1984.

[YOU 85] Jeremy Young. "IC-Design Automation Strides into Silicon-Compilation Era."
Electronics, pp. 58-63. June 24. 1985.

.,. . '.*%

FILMED
" 186

bo. DTIC7
" w " -. ".

"
-*

